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1. Introduction 
 

Because of its strength, durability, and versatility, 

concrete is one of the most widely used building materials in 

the construction industry. However, under elevated 

temperatures, it undergoes a series of adverse mechanical 

changes, such as strength loss and microstructure changes 

(Abo Sabah et al. 2019; Saberian et al. 2019). Along the same 

lines, fire-induced spalling of concrete is an unfavorable 

phenomenon that is also triggered by elevated temperatures 

(Dwaikat and Kodur 2010; Khoury 2000).  

A few theories have been proposed to explain spalling. 

The first theory linked the formation of internal 3D stresses 

resulting from concrete exposure to intense heat. Under a 

high heating rate, a steep temperature gradient will develop 

uniaxial stresses that will cause spalling once they overcome 

the tensile strength of concrete (Zhang and Davie 2013; Zhao 

et al. 2014). A second theory connected water evaporation 

inside the concrete when heated into generating a pressure 
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that keeps building up inside the concrete (Kanema et al. 

2011; Ozawa and Morimoto 2014). Once the accumulated 

pressure exceeds the tensile strength of concrete, spalling 

occurs. A third one combined both theories (Khoury 2015, 

Mindeguia et al. 2015).  

At the moment, codal provisions lack specific 

recommendations and prediction methods. Hence, we must 

consider an innovative approach apart from conducting 

expensive fire tests. This is where machine learning (ML) 

finds its relevance as a promising alternative modern 

approach. Over the past decades, the application of ML has 

grown significantly, and it is succeeding (Teymori et al. 

2022; Thai 2022). In addition, only a few research works 

mainly focused on concrete spalling. McKinney and Ali 

(2014) pioneered by developing two supervised learning 

models for the spalling classification and failure prediction 

of high-strength concrete columns (HSCC) subjected to fire. 

In addition, Zhang and Liu (2020) proposed an ML model 

with an accuracy of more than 80% to assess explosive 

spalling risk and concluded that the ML models are a 
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promising method in the domain. Also, Naser and Kodur 

(2022) developed a machine-learning model capable of 

predicting RC column fire resistance and spalling. Panev et 

al. (2021), on the other hand, built an ML model to predict 

the fire resistance of a composite shallow floor system.  

To ensure the robustness and reliability of the 

applications of ML, it is essential to integrate sensitivity 

analysis into these studies. Sensitivity analysis is crucial in 

validating the outcomes and findings of such ML approaches, 

especially when dealing with a complex phenomenon. It 

helps us understand how changes across the database can 

impact the outcomes, enabling us to validate and establish 

connections between these changes and domain knowledge 

(Ibrahimbegovic et al. 2010; Naser 2023, Seitllari et al. 

2019). A sensitivity analysis could ultimately lead to gaining 

more confidence in providing a trustworthy model that 

showcases the limitations of using these models. Thereby 

enhancing the validity and applicability of using these 

models in our domain. 

This study aims to strengthen ML implementation by 

creating various predictive models to evaluate their 

sensitivity to structural fire engineering phenomena. More 

specifically, targeting the vulnerability of these models to 

diverge in evaluation metrics or feature importance plots 

when exposed to data manipulation techniques. We 

benchmark an approach for identifying the best-performing 

and most reliable models over different ML algorithms. By 

examining these algorithms, we aim to showcase the top 

algorithms capable of accurately predicting concrete spalling 

and check the sensitivity of these models by varying the 

database sizes and input data size and factors. Also, identify 

the key factors influencing spalling by integrating an 

explainability tool and evaluate the model’s sensitivity in 

generating a unified feature importance plot that we can rely 

on for our future research direction. 

 

2. Statistical insights 
 
This section demonstrates the statistical insights of the 

used database consisting of 22 factors and more than a 

thousand fire tests (about 1066 tests). In this sensitivity 

analysis, the selected factors were identified as influential 

based on existing literature. Hence, we decided to focus our 

analysis and discussion on these factors. Figure 1 shows the 

graphical distribution for each factor.  

 

3. ML models 
 

3.1 ML algorithms 
 

In this section, a brief description will be provided for the 

fifteen ML algorithms that were used in this sensitivity 

analysis. Namely, Adaptive Boosting (ADA), Bernoulli 

Naive Bayes (Bernoulli NB), Categorical Boost (CatBoost), 

Decision Tree (DT), Extra Trees Classifier (ETC), Gaussian 

Naive Bayes (Gaussian NB), K-Nearest Neighbors (KNN), 

Light Gradient Boosting Machine (LGBM), Linear 

Discriminant Analysis (LDA), Logistic Regression (LR), 

Random Forest (RF), SPINEX Classifier (SPINEX), Support 

Vector Machine (SVM), Xtreme Gradient Boosting 

(XGBoost) and Deep learning (DL). It is worth noting that 

while we provide a brief overview here, more comprehensive 

details about these algorithms can be found in the cited 

references. Further, Table 1 outlines various characteristics 

and properties of the used ML algorithms. The selected 

algorithms were compared based on their broad types of ML, 

most common real-world applications, the complexity of its 

underlying mathematics, limitations, whether it is primarily 

used for classification or regression tasks, sensitivity to 

outliers, and the interpretability of the resulting model. 

 

3.1.1 Adaptive Boosting (AdaBoost) 
 
AdaBoost is an ensemble learning algorithm that 

reassigns higher weights to the misclassified instances 

(adapting) (Freund and Schapire 1997). It is a boosting 

algorithm; generally, all boosting algorithms generate an X 

number of decision trees during the training phase, and only 

the incorrect decisions will be sent to train the second model, 

which is common in all the boosting ML algorithms. 

However, AdaBoost creates only a decision tree with two 

leaves, and the decision of this tree (stump) is critical, as the 

subsequent weak learners will mainly depend on the decision 

made in the previous tree. Hence, it is sensitive to noisy data 

and outliers. In this work, the AdaBoost classifier is 

augmented with the following configurations: 400 

estimators, a learning rate of 0.1, the SAMME algorithm, and 

a random state of 4. 

 

3.1.2 Deep learning (DL) 
 
The DL algorithm is inspired by the human brain, which 

consists of countless neurons (McCulloch and Pitts 1943). 

Typically, inside this process (layers), the input will be 

multiplied by a weight, which will then be summed, and a 

bias constant will be added to that summation. Finally, the 

summed equation is passed over an activation function (i.e., 

Sigmoid), which will turn the input into the desired 

prediction. However, DL is a type of learning that is complex 

to interpret and understand its internal workings. In this 

work, the DL model consisted of 4 dense layers with tanh 

activation functions. The input layer has 128 neurons 

corresponding to the input dimensions. The subsequent 

layers have 64, 32, 16, and 8 neurons, respectively. Also, a 

dropout layer with a rate of 0.2 is added to minimize the 

overfitting of the model. Furthermore, the final dense layer 

has one neuron with a sigmoid activation function to produce 

a binary classification prediction. 

 

3.1.3 Categorical Boosting (Catboost) 
 
CatBoost (Prokhorenkova et al. 2017) is known for its 

excellent performance in various tasks, handling categorical 

variables and missing values using a symmetric weighted 

quantile sketch (SWQS) algorithm. However, like other 

gradient-boosting algorithms, it has many hyperparameters 

that require tuning and can be computationally expensive. 

The CatBoost classifier is initialized with the following 

hyperparameters: a learning rate of 0.5, a maximum depth of 

7, a number of estimators used of 500, a random seed of 42, 
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an evaluation metric of ‘AUC,’ and verbosity set to False. 

 

3.1.4 Decision Tree (DT) 
 
This algorithm works by building an inverted tree that 

splits the input into a conditional branch (Quinlan 1986). The 

root represents the variable being considered, while the 

branches represent the decision outcome of the variable  
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Fig. 1 Summary of graphical distribution of the fire-

induced spalling of the concrete database 

 

considered. It performs well for classification problems and 

can handle non-linear relationships and missing values. 

However, DT is sensitive to small changes in the data, which 

can severely affect the performance and destabilize the tree. 

Below are the settings used to develop the DT model: Criteria: 

Gini as the splitting criterion, a maximum depth of 10, no 

limit on the maximum number of features considered (None), 

a minimum of 2 samples required in each leaf, a minimum of 

4 samples required to split an internal node, and a random 

splitter. 

 

3.1.5 Extra Trees Classifier (ETC) 
 

ETC is an ensemble learning method that can be used for 

classification and regression models (Geurts et al. 2006). It 

constructs multiple decision trees by using the entire dataset 

to select the feature to build the trees randomly but chooses 

the best split threshold randomly rather than optimizing it. 

This results in faster training times and increased diversity 

among the trees, which can help to reduce overfitting. The 

best parameters for the created model are identified as 

follows: the splitting criterion is set to ‘gini,’ the maximum 

depth of the tree is left unrestricted (None), the maximum 

features considered at each split are determined 

automatically (auto), and the number of estimators in the 

model is set to 100. 

 

3.1.6 Gaussian naïve Bayes (GaussianNB) & 
BernonaïveNaive Bayes (BernoulliNB) 

 
GaussianNB (Duda et al. 2001) and BernoulliNB 

(Domingos et al. 1996) are implementations of the Naive 

Bayes algorithm that is used particularly for classification 

problems.  

On the one hand, GaussianNB performs well with 

classification tasks. The algorithm estimates the mean and 

standard deviation of each factor/class and incorporates them 

to calculate the probability of each class based on the 

examined factors. On the other hand, BernoulliNB is mainly 

used for binary classification tasks. Hence, it is expecting a 

binary outcome. One of the main concepts in BernoulliNB is 

that it penalizes the model for the NA values in any features, 

considering it as meaningful information rather than ignoring 

it, which is one of the differences between the two discussed 

Naive Bayes. Also, both algorithms may underperform when 

the Naïve’ independence assumption’ is severely violated. 

The GaussianNB was tuned with the following parameter: 

var_smoothing = 3.5e-08. While the BernoulliNB was tuned 

with the following parameters: alpha = 1.0 and binarize = 0.0.  

 

3.1.7 K-Nearest Neighbors Algorithm (KNN) 
 
This algorithm is compatible with classification and 

regression problems but is extensively used for classification 

tasks rather than regression (Fix 1985). The algorithms 

categorize the new data points by calculating the distances 

between the new data points and the training data. They then 

select the closest points and use their class to predict the new 

data point. It is a nonparametric algorithm that can handle 

non-linear relationships. Also, choosing the optimum k value 

severely influences the model’s performance. Hence, 

choosing the optimum K value can be a complex task. The 

K-Nearest Neighbors (KNN) model is applied with the 

following parameters: algorithm = 'ball_tree’, leaf_size = 30, 

metric = 'manhattan’, n_neighbors = 3, p = 1, and weights = 

'uniform’. 

 

3.1.8 Light Gradient Boosting Machine (LGBM) 
 
LGBM was developed by Microsoft in 2016; since then, 

it has gained popularity due to its rapid processing speed and 

high performance, ability to handle missing data and 

categorical data, and ability to deal with non-linear 
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relationships (Ke et al. 2017). It uses a gradient-boosting 

framework based on decision tree algorithms. However, it is 

designed to perform better because their trees expand from 

one leaf side (vertically), while other boosting trees split 

horizontally (one level of leaves by another). In addition, 

LGBM is known for its need for regularization techniques to 

minimize overfitting, which is a known downside for LGBM 

due to the vertical expansion of the tree, especially in small 

datasets. The LGBM classifier is set with the following 

parameters: a learning rate of 0.5, a maximum depth of 7, a 

binary classification objective, 500 estimators, and a random 

state of 42. 

 

3.1.9 Linear Discriminant Analysis (LDA) 
 
LDA is a linear classification algorithm that is popular in 

reducing the dimensionality reduction technique, which has 

become essential in the ML domain due to the existence of 

high dimensional databases (Fisher 1936). Ronald Fisher 

introduced the idea in the 1930s, which was applied to a 2-

dimensional problem before developing it for multi-

dimensional tasks. It aims at separating and reducing a 

database that consists of multi-features (each feature 

represents a dimensional plane), and the goal is to project the 

multi-dimensional features planes into 2-D or 3-D planes and 

then separate these planes based on the label class (outcome) 

and therefore, a human can easily understand the generated 

plots. It assumes that the data is normally distributed within 

each class and that the covariance matrices are equal for all 

classes, which may not always be accurate. 

 

3.1.10 Logistic Regression (LR) 
 
Unlike linear regression, LR works with classification 

problems when the output is categorical (usually a binary 

classification) (Cox 1958). It is a statistical method that 

determines the occurrence probability of the output class 

(i.e., fail, pass) given a set of input features. The LR model 

is configured with the following settings: the inverse of the 

regularization strength is set to 29.8, class weights are not 

specified (None), intercept fitting is enabled (fit 

intercept=True), the maximum number of iterations is set to 

100, the penalty used is L1 regularization (penalty = l1), the 

solver used is Liblinear (solver = liblinear), the tolerance is 

set to 0.0001, and warm start is enabled (warm start = True). 

 

3.1.11 Random Forest (RF) 
An ensemble ML approach can be used for classification 

and regression problems by generating several decision trees 

on different levels and using the average of the trees’ 

outcomes to improve the predictive accuracy instead of 

depending on a single decision tree’s outcome (Breiman 

2001). This algorithm uses a bagging approach that selects 

various training data to ensure the generated decision trees 

are universal (accounts for the maximum variation of data 

points). However, it has higher computational complexity 

than single decision trees and may be less interpretable. The 

random forest classifier is tweaked with the following 

configurations: 500 estimators, a maximum depth of 10, a 

minimum of 2 samples required to split an internal node, and 

a random state of 42. 

 

3.1.12 SPINEXClassifier (SPINEX) 
 
The SPINEX algorithm (Naser et al. 2023) is designed 

for interpretable regression and classification tasks. It starts 

by implementing essential preprocessing techniques to 

ensure the database is clean. Then, it calculates the distances 

between the two samples’ features and assigns weights based 

on similarity using the Gaussian kernel function to 

accommodate single or ensemble models to distinguish 

between the complexity of the database. This algorithm 

builds on the importance of neighbor-based features to 

measure each feature’s contribution, considering the 

influence of neighboring instances. SPINEX aims to provide 

transparent and interpretable predictions. The 

SPINEXClassifier is configured with a neighbor count of 3, 

a distance threshold of 0.05, no ensemble method (None), 

and a ‘Manhattan’ metric for distance calculation. 

 

3.1.13 Support Vector Machine (SVM) 
 
SVM is a family of algorithms mainly used for 

classification (Cortes and Vapnik 1995). It creates a plane 

with the number of features as the dimension of the generated 

plane and plots the raw data. The goal is to tie the data point 

to a specific coordinate to ease the complexity of classifying 

the data. SVM can handle non-linear correlations but uses 

kernel functions to plot the raw data points into a multi-

dimensional plane. Although SVM is effective in high-

dimensional spaces, large databases have high energy and 

time consumption. 

 

3.1.14 Xtreme Gradient Boosting (XGBoost) 
 
A decision-tree-based algorithm that uses a gradient 

boosting framework widely known for its high performance, 

speed, and scalability (Chen and Guestrin 2016). This 

algorithm starts by assigning a value to the tree leaves to 

build shallow decision trees. The error from these trees will 

be used to build the subsequent shallow tree, which will 

perform better because the model learns from the previous 

errors. Once the tree reaches the end of the training data, the 

model will use the predictions of the generated trees to make 

a prediction. In this analysis, the developed algorithm was 

tweaked with the following settings:  Col sample by tree 

value of 1.0, a learning rate of 0.1, a maximum depth of 7, a 

minimum child weight of 1, 100 estimators, and a subsample 

of 0.8. 

 

3.2 Technical details 
 
Here, we delve into the technical aspects of the model 

deployment and discuss the metrics used to evaluate the 

performance of the models. Also, the approaches are taken to 

prevent unfavored biases that models can encounter during 

the training phase. 

First, the algorithm’s hyperparameter configurations 

should be optimized for each algorithm to achieve the 

optimum performance. Hence, these algorithms need to be 
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fine-tuned. Grid Search Cross-Validation’ GridSearchCV’ 

technique (Sklearn 2023) was used to automate the search for 

the best hyperparameter values for a model to optimize its 

performance.  

Along the same lines, the model’s performance was 

evaluated based on four metrics: accuracy score, area under 

the curve (AUC), log loss, and cross-validation. The 

accuracy score is intuitive, representing the ratio of the 

prediction observation to the ground truth.
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Algorithm Family Most common 

real-world 

applications 

Complexity Limitation Classification 

or regression 

Sensitive 

to 

outliers 

Interpret-

ability 

Adaptive 

Boosting  

(Freund and 

Schapire 1997) 

Boosting Face detection, 

biology, speech 

processing 

High Sensitive to noisy data 

and outliers 

Both Yes Low 

Bernoulli Naive 

Bayes 

(Domingos et al. 

1996) 

Probabilistic Text 

classification, 

spam filtering 

Low Assumes independence 

of features 

Classification No High 

Categorical 

Boost  

(Prokhorenkova 

et al. 2017) 

Boosting Tabular data, 

search ranking, 

ads ranking, 

recommendation 

systems 

High Requires parameter 

tuning 

Both Yes Low 

Decision Tree 

(Quinlan 1986) 

Tree-based Tabular data, 

customer 

segmentation, 

decision-making 

problems 

Medium Prone to overfitting Both No High 

Extra Trees 

Classifier  

(Geurts et al. 

2006) 

Tree-based Tabular data, 

bioinformatics, 

genomics 

High Randomness can lead to 

lower accuracy 

Both No High 

Gaussian Naive 

Bayes 

(Duda et al. 

2001) 

Probabilistic Text 

classification, 

spam filtering 

Low Assumes independence 

of features 

Both No High 

K-Nearest 

Neighbors (Fix 

1985) 

Instance-

based 

Tabular data, 

recommendation 

systems, concept 

search 

Medium Computationally 

intensive as the dataset 

grows 

Both Yes Moderate 

Light Gradient 

Boosting 

Machine  (Ke 

et al. 2017) 

Boosting Tabular data, 

search ranking, 

ecology, 

anomaly 

detection 

High Requires parameter 

tuning 

Both Yes Low 

Linear 

Discriminant 

Analysis 

(Fisher 1936) 

Discriminant 

analysis 

Face 

recognition, 

image retrieval 

Medium Assumes normal 

distribution and equal 

covariance matrices 

Both Yes Moderate 

Logistic 

Regression  

(Cox 1958) 

Regression Tabular data, 

credit scoring, 

measuring 

campaign 

effectiveness 

Low Requires feature 

scaling, not suitable for 

non-linear problems 

Classification Yes High 

Random Forest  

(Breiman 2001) 

Tree-based Tabular data, 

banking, stock 

market,  

e-commerce 

High Requires parameter 

tuning 

Both No Moderate 

Support Vector 

Machine 

(Cortes and 

Vapnik 1995) 

Kernel-

based 

Image 

recognition, text 

categorization, 

bioinformatics 

High Requires parameter 

tuning, not suitable for 

large datasets 

Both Yes Low 

Xtreme Gradient 

Boosting 

(Chen and 

Guestrin 2016) 

Boosting Tabular data, 

anomaly 

detection, 

predictive 

High Requires parameter 

tuning 

Both Yes Low 

Table 1 Comparison of various ML algorithms 
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modeling, 

search ranking 

SPINEX 

Classifier  

(Naser et al. 

2023) 

Ensemble 

learning 

Tabular data Medium Energy consumer Both High Moderate 

Artificial Neural 

Network 

(McCulloch and 

Pitts 1943) 

Deep 

learning 

Image 

recognition, 

natural language 

processing, 

speech 

recognition 

Very high Requires substantial 

data, difficult to 

interpret 

Both Yes Low 

 

Complete database (100%) Testing Set (Stratified) 

  Testing set Training set Cross validation 

score 
Model Accuracy AUC 

Log- 

loss Accuracy AUC 

Log- 

loss 

Light Gradient Boosting Machine 93.5% 91.3% 2.36 98.7% 98.1% 0.45 96.4% 

Xtreme Gradient Boosting 93.8% 92.2% 2.24 98.9% 98.4% 0.40 96.1% 

Random Forest 91.5% 89.6% 3.06 99.2% 98.8% 0.30 94.4% 

Extra Trees Classifier 90.2% 87.7% 3.53 99.2% 98.6% 0.30 94.0% 

Categorical Boost 92.5% 90.3% 2.71 98.2% 97.1% 0.66 92.0% 

Adaptive Boosting 87.3% 83.1% 4.59 87.8% 81.9% 4.40 91.5% 

SPINEX Classifier 85.6% 82.3% 5.18 98.5% 97.8% 0.56 89.8% 

Decision Tree 87.3% 84.1% 4.59 96.9% 94.7% 1.11 88.4% 

Linear Discriminant Analysis 80.7% 75.7% 6.95 79.5% 70.9% 7.38 83.9% 

Support Vector Machine 81.0% 75.3% 6.83 79.5% 71.2% 7.38 82.9% 

Gaussian Naive Bayes 76.5% 77.6% 8.48 75.2% 75.6% 8.95 78.6% 

Bernoulli Naive Bayes 72.5% 58.4% 9.89 77.1% 61.3% 8.24 73.6% 

Logistic Regression 83.3% 77.9% 6.01 81.1% 72.6% 6.82 70.3% 

K-Nearest Neighbors 85.6% 80.7% 5.18 91.7% 88.4% 2.98 42.9% 

Deep Learning  85.6% 92.0% 0.41 92.8% 98.2% 0.17 0.0% 

Table 2 Summary of models’ evaluation metrics scores for both training and testing sets 
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Although users prefer higher accuracies, this metric 

might overestimate the model’s accuracy when using an 

imbalanced target feature. To overcome the imbalanced 

target feature issue, the AUC metric comes in handy, as it can 

differentiate between positive and negative classes, leading 

to an accuracy that accounts for both classes. In AUC, the 

score of 100% represents a perfect classification. In addition, 

the Log loss or cross-entropy loss metric was also used to 

quantify the model performance and show how surprised the 

model is with the predicted class. When a model makes a 

prediction, it provides a probability value for each class. A 

good model should have a lower log loss value, with 0 

representing a perfect log loss. 

The cross-validation technique checks the model’s 

vulnerability to failure in generalizing a pattern and reducing 

bias (i.e., overfitting), typically by splitting the entire 

database into K folds. In this validation process, each of the 

K folds will be used to test the model, and the remaining folds 

will be used to train and fit the model. Therefore, the model’s 

performance will be controlled. This work implemented the 

cross-validation technique to evaluate the model on a 

validation dataset by setting the K value to 5 folds.  

 All models were trained on split data with a training-to-

testing sets ratio of 70%:30% to help us prevent any bias the 

model could encounter. The testing set is then used to 

evaluate the trained model and validate its results. In 

addition, each of the created models was implemented with 

one or more of the regularization techniques (i.e., early 

stopping, dropouts) to reduce the vulnerability of models to 

overfit.  

 

4. Discussion 
 

This section consists of six subsections. The first 

subsection presents our analysis using the whole database. In 

the subsequent subsections, subsets from the original 

database of 75% and 50% of the original database by 

maintaining their original data distribution (stratified 

database) are examined. These subsequent subsections focus 

on the behavior of the models when changing the distribution 

of the target variable to be normally distributed (customized 

database). Furthermore, a hybrid analysis will be repeated 

using the key factors influencing spalling for the top-

performing models, pointing out the main differences and 

impacts on the model’s performance and robustness. Finally, 

the DL model was separately addressed in a subsection as the 

model showed biased insights.   

 

 

4.1 Whole database (100%) 
 
The evaluation results in Table 2 show a variation in the 

models’ performance. Based on the testing results, LGBM, 

XGBoost, and RF outperformed all the other models. This 

table also shows that the CatBoost, ETC models performed 

well, with an accuracy of 92.5% and 90.2%, AUC of 90.3%, 

87.7%, Log loss of 2.71, 3.53, and a cross-validation score of 

92.0%, 94.0%, respectively.  

The DL model presented exciting results, with a 

relatively low accuracy score of 85.6% and a strong AUC 

score of 92%, and surprisingly, achieving the lowest log loss 

of 0.41 among all the models. This suggests that, despite 

relatively low accuracy, the model shows a high confidence 

level in its prediction. In contrast, models such as Gaussian 

NB and Bernoulli NB underperformed significantly, as 

indicated by their lowest accuracy and their highest log loss. 

The remaining models showed varied results. Some models, 

such as AdaBoost and DT, demonstrated strong performance, 

while others, like SVM and LR, performed poorly 

concerning other models. 

By looking at the training set’s evaluation metrics, results 

differ between training and testing scores, which can be 

explained by the large number of samples used for training 

purposes compared to the testing samples. The less accurate 

models such as LR, SVM (kernel = Linear), GaussianNB, 

and BernoulliNB metrics in both training and testing sets 

were not highly impacted. However, one can see that all the 

evaluation metrics of XGBoost, RF, LGBM, ETC, and 

SPINEX demonstrated strong results. It is noteworthy that, 

despite the regularity in the model’s performance across the 

evaluation metrics, none of the models tops all the metrics 

simultaneously, which validates the assumption of using 

more than one metric to evaluate the model. 

Along the same lines, some models are more sensitive 

than others to the data being processed, which can affect the 

model’s behavior and performance. Therefore, we decided to 

evaluate feature importance based on the best-performing 

models. Two groups were considered, firstly, gradient-

boosting algorithms, including LGBM, XGBoost, and 

CatBoost, because they are derived from the same gradient-

boosting family. Secondly, RF, and ETC are learning 

ensemble methods; hence, using them in the same group is 

more rational. 

 

4.1.1 LGBM, Catboost, and XGBoost 
 

As discussed, the gradient boosting models share the 

same framework by building a series of learners’ decision 

trees; however, they differ in the expansion shapes and rates. 

These models provide feature importance plots based on how 

often a specific feature is used to decide on the generated 

decision trees. One can see exciting insight by looking at Fig. 

2. All the models agreed to a large extent on the top 10 critical 

factors influencing fire-induced spalling of concrete and 

identifying maximum exposure temperature, compressive 

strength, heating rate, moisture content, PP fiber quantity, 

and silica fume/binder ratio as the top 6 influencing factors 

to the spalling. 

Alternatively, by looking into the lower half of the top 10 

parameters, one can see that the focus was shifted to the 

geometric and concrete mix properties factors. For example, 

LGBM and XGBoost considered water/ binder ratio, 

https://doi.org/10.12989/cac.2024.33.4.409
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sand/binder ratio, length, height, and PP fiber diameter as the 

lower half of the top influencing factors. CatBoost, on the 

other hand, partially agreed with some factors, such as the 

length and the PP fiber diameter, and introduced the PP fiber 

length and the aggregate types as critical factors. 

 

 
(a) LGBM 

 
(b) XGBoost 

 
(c) CatBoost 

Fig. 2 Feature importance of top-performing models 

 

4.1.2 RF, ETC 
 
By considering the sequence of the feature importance of 

the RF, ETC models (Fig.3), it is evident that they share the 

same top 6 key factors influencing fire-induced concrete 

spalling with the top 3 models. Despite the slight changes in 

the factors’ positions among RF, and ETC, they shared the 

same top 6 factors, which can be explained by the similarity 

in building the decision trees. Also, the lower half of the 

critical factors were aggregate/ binder ratio, the length, 

width, and PP diameter for the RF model, in contrast with the 

PP fiber length, PP fiber diameter, and Shape of the specimen 

and the maximum aggregate size for the ETC model seem to 

be given a less importance influence on the prediction.  

 

 
(a) RF 

 
(b) ETC 

Fig. 3 Feature importance plots 

 

4.2 75% of the database 
 

To check the robustness of the developed models, we 

used a reduced dataset and evaluated the models’ response 

through accuracy and feature importance. In this subsection, 

the data points were randomly selected from the database. 

However, the main criteria considered are maintaining the 

exact distribution of the target variable (spalling, no spalling) 

and the top 6 critical factors ─ see Fig. 4. Findings from this 

approach revealed a slight variability in the model’s 

performance. The overall evaluation was not severely 

impacted by decreasing the number of selected samples, 

indicating that the models could capture the pattern of the 

prediction function extracted from the data. 

The testing scores in Table 3 show that XGBoost, LGBM, 
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and RF cross-validation scores were almost constant, with a 

slight increase in the RF score. They consistently maintain 

high accuracy, AUC, and low Log Loss scores on the testing 

and training sets. This suggests
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Reduced dataset (75%) Testing Set (Stratified) 

  Testing set Training set Cross validation 

score 
Model Accuracy AUC 

Log-

loss Accuracy AUC 

Log-

loss 

Xtreme Gradient Boosting 90.4% 85.7% 3.45 98.9% 98.6% 0.40 96.0% 

Light Gradient Boosting Machine 89.6% 84.1% 3.76 98.7% 98.1% 0.47 95.6% 

Random Forest 89.1% 82.4% 3.92 99.1% 98.7% 0.34 94.9% 

Extra Trees Classifier 88.3% 82.3% 4.23 99.1% 98.3% 0.34 94.6% 

Adaptive Boosting 87.0% 80.9% 4.70 90.3% 87.0% 3.51 91.7% 

Categorical Boost 87.0% 79.4% 4.70 96.4% 94.6% 1.28 91.1% 

Decision Tree 87.8% 80.5% 4.39 97.9% 96.7% 0.74 87.5% 

SPINEX Classifier 85.2% 80.6% 5.33 98.7% 98.7% 0.47 88.4% 

K-Nearest Neighbors 81.3% 74.6% 6.74 91.8% 88.5% 2.97 87.5% 

Support Vector Machine 81.3% 72.2% 6.74 79.8% 73.5% 7.29 82.5% 

Linear Discriminant Analysis 79.1% 69.2% 7.52 80.3% 73.9% 7.09 83.8% 

Gaussian Naive Bayes 77.0% 72.0% 8.31 76.0% 76.1% 8.64 78.6% 

Logistic Regression 82.6% 74.5% 6.27 81.8% 75.8% 6.55 70.3% 

 

Fig. 4 Comparison between the database distribution when using 75% of the original database 

Table 3 Summary of models’ evaluation metrics scores for both training and testing sets 

https://doi.org/10.12989/cac.2024.33.4.409
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Bernoulli Naive Bayes 71.3% 56.1% 10.3 75.3% 62.5% 8.91 73.0% 

Deep Learning 85.7% 88.9% 0.48 94.4% 99.0% 0.12 0.0% 
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that these models effectively generalize the trend, reducing 

the likelihood of overfitting. The DL has maintained a 

relatively good accuracy, an impressive AUC, and a log loss 

score, indicating it provides highly confident predictions. 

Despite their relatively acceptable performance, some 

models, such as ETC and CatBoost, experienced a 

retracement in the overall performance. Some models like 

GaussianNB, BernoulliNB, and LR show relatively lower 

performance than others. This could be due to the linear 

nature of these models; hence, they are struggling with the 

complexity of the data. In addition, models such as DT 

showed a performance metrics score significantly lower than 

in the training set, which might be a symptom of overfitting.   

Overall, the model performances seem to have decreased 

slightly compared to the 100% dataset, which is expected 

given that the models now have less data to learn from. Still, 

the performances are relatively high, indicating that the 

models could learn effectively from a reduced dataset. 

Alternatively, the evaluation metrics of the training set 

remained within the range of over 95% for the three models. 

In addition, by looking at Fig. 5, the feature importance 

plot shows that XGBoost, LGBM, and RF feature importance 

did not change by decreasing the database number of 

samples. Still, ETC and CatBoost followed the same 

observation on the key influencing factors. As one can see, 

maximum exposure temperature, compressive strength, 

heating rate, moisture content, PP fiber quantity, and silica 

fume/binder ratio were also identified as the top 6 

influencing factors to the spalling. The above discussion 

reinforces the concept of conducting a sensitivity analysis as 

the divergent rankings of the influencing factors showcase 

the alternative ways the model can explain, interpret, and 

learn from data. Hence, engineers can observe these 

differences and analyze them. However, in this case, the top 

influencing factors remained consistent, but with slight 

changes in the magnitude of importance.  

 

4.3 50% of the database 
 

The same analysis was carried out with a 50% data 

reduction. The selection of the data points followed the same 

approach taken previously by maintaining the distribution of 

the target variable and the top influencing factors─see Fig. 6. 

As expected, a general decline in the overall models’ 

performance is seen in Table 4. Most of the top-performing 

models’ accuracy scores retraced to the low 80s, a significant 

drop in the AUC score and log loss score indicating the need 

for more data to train the model. Despite their relatively good 

performance, there is still a significant gap between the 

training and testing scores, which might be concerning as it 

might indicate some form of overfitting. Interestingly, it is 

clear that the LGBM and DL models were the top performers, 

demonstrating relatively high accuracy and strong AUC 

scores. Surprisingly, DL distinguishes itself with the lowest 

log loss, indicating high confidence in its performance. 

Alternatively, the GaussianNB and BernoulliNB models 

demonstrated a low performance, suggesting they might 

struggle if used in a complex, non-linear dataset. Fig. 7 

illustrates the feature importance for this subsection of the 

dataset and clearly shows that the key factors remained the 

same. 

 

4.4 Customized database reduction 
 

The main concept in this reduction approach is creating a 

75% and 50% reduced dataset where the outcome (i.e., 

spalling, no spalling) is balanced and choosing a wide range 

of samples spanning over the factors’ spectrum based on the 

key factors influencing concrete spalling. The aim is to 

compare the performance of the top performing models when 

the distribution of the database is maintained versus when the 

distribution is reduced in a systematic approach to achieving 

a normal distribution, and the outcome parameter is 

considered balanced. 

On the one hand, the 75% data frame showed a relatively 

good performance. XGBoost, LGBM, ETC, and RF achieved 

the highest cross-validation score ranging between 93-95%, 

an accuracy score of more than 90%, and an AUC score of 

slightly under 90% with an exception for ETC, scoring 90% 

as the Highest AUC score among all the models. Despite the 

significant reduction in data size, the evaluation of the 

customized dataset was not severely impacted except for the 

AUC scores. Fig. 8 shows that the balanced 75% dataset 

achieved a relatively similar accuracy score and cross-

validation score as opposed to the stratified 75% dataset. 

However, the stratified case’s AUC scores significantly 

dropped to the mid-80s. In addition, the XGBoost model was 

the least impacted by the data customization regarding the 

AUC and accuracy scores.  

On the other hand, a dataset with a 50% reduction has 

been created with the same above-described principle. The 

overall performance shows a similar trend as in the 75% 

scenario but with some variations. XGBoost, LGBM, and RF 

models still managed to secure top spots with accuracy and 

AUC scores near or above 87%. It is noteworthy that, despite 

the further reduction in data size, these models showed 

resilience, maintaining a relatively high level of 

performance. It is worth noting that the comparison between 

the 50% balanced and the stratified datasets (Fig. 9) reflects 

the same pattern as the 75% cases. However, the AUC scores 

were negatively impacted due to the variation of the data size 

and distribution, but the overall performance of the models 

improved compared to the stratified 50%.   

 

4.5 Complete database (Top 6 factors) 
 

In this subsection, the ML models were trained on the 

complete database by only considering the top 6 factors 

influencing concrete spalling: maximum exposure 

temperature, compressive strength, heating rate, moisture 

content, PP fiber quantity, and silica fume/binder ratio. To 

check the sensitivity of the models with fewer features, it 

would be interesting to compare the results from the full 

features set analysis versus the critical features set analysis ─ 

Table 5, models that perform well on both the full features 

set and the critical features set are likely to be capturing the 

underlying mechanism/relationships of the Spalling 

phenomenon. As shown in Fig. 10, it is clear that despite  
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Fig 6 Comparison between the database distribution when using 50% of the original database 

 

 
Fig. 5 Combined feature importance of the top-performing models (75% of the database) 
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Fig. 8 Comparison between the top-performing models in the two cases of 75% of the database input 

 

 
Fig. 9 Comparison between the top-performing models in the two cases of 50% of the database input 

 

 

 

 

 

 

 

 

 

 
Fig. 7 Combined feature importance of the top-performing models (50% of the database) 
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Reduced dataset (50%) Testing Set (stratified) 

  Testing set Training set Cross validation 

score 
Model Accuracy AUC 

Log- 

loss Accuracy AUC 

Log- 

loss 

Light Gradient Boosting Machine 84.3% 80.3% 5.65 99.4% 99.0% 0.20 95.7% 

Xtreme Gradient Boosting 83.0% 77.2% 6.13 99.4% 99.0% 0.20 96.3% 

Decision Tree 85.0% 79.3% 5.42 97.2% 94.9% 1.01 88.2% 

Categorical Boost 83.0% 76.4% 6.13 96.3% 95.0% 1.32 91.5% 

Extra Trees Classifier 80.4% 72.4% 7.07 99.7% 99.5% 0.10 95.2% 

Random Forest 80.4% 71.7% 7.07 99.7% 99.5% 0.10 94.7% 

Adaptive Boosting 79.1% 73.0% 7.54 93.5% 90.9% 2.33 91.8% 

SPINEX Classifier 80.4% 72.4% 7.07 99.4% 99.3% 0.20 88.3% 

K-Nearest Neighbors 79.7% 72.0% 7.30 90.7% 87.4% 3.34 88.3% 

Support Vector Machine 77.8% 72.8% 8.01 86.5% 83.2% 4.86 82.3% 

Linear Discriminant Analysis 76.5% 69.7% 8.48 82.9% 77.6% 6.18 83.9% 

Logistic Regression 78.4% 71.8% 7.77 84.8% 79.2% 5.47 70.3% 

Gaussian Naive Bayes 67.3% 65.6% 11.78 79.2% 76.6% 7.49 78.6% 

Bernoulli Naive Bayes 71.9% 60.6% 10.1 78.1% 69.3% 7.90 72.9% 

Deep Learning 84.3% 83.7% 0.72 95.8% 99.4% 0.09 0.0% 

 

 

 
Fig. 10 Comparison between the top-performing models in the full and reduced features databases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Summary of models’ evaluation metrics scores for both training and testing sets 
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Table 5 Summary of models’ evaluation metrics scores for both training and testing sets of the complete database (key 

features) 

Complete Database (top 6 features) 

  Testing set Training set Cross validation

 score 
Model Accuracy AUC 

Log-

Loss Accuracy AUC 

Log-L

oss 

Light Gradient Boosting Machine 92.2% 89.4% 2.83 97.5% 96.0% 0.91 95.1% 

Xtreme Gradient Boosting 91.5% 89.0% 3.06 97.9% 96.4% 0.76 94.7% 

Random Forest 90.5% 87.6% 3.42 98.3% 97.5% 0.61 93.5% 

Extra Trees Classifier 89.2% 85.2% 3.89 98.3% 97.2% 0.61 94.1% 

Categorical Boost 89.9% 86.3% 3.65 93.5% 89.6% 2.33 89.5% 

SPINEX Classifier 85.6% 81.4% 5.18 97.3% 96.0% 0.96 87.4% 

Decision Tree 85.3% 82.7% 5.30 96.4% 94.4% 1.31 86.2% 

Adaptive Boosting 83.0% 77.6% 6.13 84.3% 77.2% 5.66 89.9% 

K-Nearest Neighbors 83.3% 78.5% 6.01 90.9% 87.3% 3.29 86.9% 

Linear Discriminant Analysis 78.8% 68.1% 7.66 78.1% 66.1% 7.89 80.7% 

Logistic Regression 80.1% 69.3% 7.19 78.0% 66.2% 7.94 77.6% 

Gaussian Naive Bayes 76.1% 71.5% 8.60 76.4% 69.3% 8.49 78.3% 

Support Vector Machine 76.1% 63.4% 8.60 76.4% 60.8% 8.49 80.2% 

Bernoulli Naive Bayes 69.9% 50.0% 10.8 73.2% 50.0% 9.66 69.1% 

Deep Learning 82.7% 89.2% 0.38 83.6% 88.3% 0.37 0.0% 
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the reduction in features, the top-performing models for the 

complete database with all features and the critical features 

set remain largely the same with a general slight decline in 

performance. Still, the models continued to perform well, 

indicating the impact of the selected features on the spalling 

prediction. Even with a reduction in features, LGBM, 

XGBoost, RF, ETC, and CatBoost models have shown 

resilience and robustness, dominating the overall 

performance of the other models in this study. Also, the 

comparison between the training and testing sets of the DL 

model seems to be close enough, which eliminates any 

symptoms of overfitting or data memorization issues. 

Similarly, models such as GaussianNB and BernoulliNB 

continue to perform poorly in both scenarios, confirming that 

they are unlikely to be appropriate for this complex problem 

or database.  

 

4.6 DL investigation 
 

One model of particular note was the DL. We evaluated 

the model across various scenarios, similar to the previous 

subsections, using the complete database, 75% and 50% of 

the original database size. In addition, we maintained the 

original distribution of the data (stratified) and examined the 

performance by customizing the data distribution 

(customized). Remarkably, the model’s accuracy remained 

consistently high across these scenarios. According to 

evaluation metrics from Table 2 - Table 5, one can see that, 

despite changes in data size or distribution, the accuracy 

scores slightly declined to 84% when using the stratified 50% 

of the database while remaining at 87% in both the 75% and 

the complete database scenarios. 

Moreover, similar accuracy scores were observed when 

customizing the reduction of data to become a normally 

distributed dataset. In line with this, the log loss metric 

achieved the lowest score among all models in all scenarios, 

remaining below 1, indicating that the model was very 

confident when making the prediction. Also, the AUC scores 

were high, remaining above 83% for the 50% data scenario 

and above 87% for other types of data reduction.  

Despite the high and robust performance presented by the 

model, a ‘non-sense’ divergence was observed upon 

examining the DNN’s feature importance. In the complete 

database scenario, the feature importance plot for the DNN 

model (see Fig. 11) comes with a different insight. The model 

identified the heating rate, maximum exposure temperature, 

and compressive strength of concrete as three of the top 6 key 

factors matching the other models. Contrary to the widely 

accepted theories and domain knowledge, the DNN 

highlighted the specimen height, PP fiber diameters, 

maximum aggregate size, length, width, steel fiber quantity, 

and PP fiber length as 7 of the top 10 influencing factors. 

Notwithstanding their importance, the model did not 

highlight other factors, such as the moisture content. Instead, 

it was identified as the least important among all the 22 

factors. 

Also, these outcomes contradict the findings from the 

top-performing models. One can see that although the DL 

model performed well, the results are unexpected, which 

highlights the essential need for a detailed check and 

confirmation of the data used in predictive modeling. Also, 

we suspect that the significant divergence of the critical 

factors in the model is mainly due to the complexity of 

interpreting the DL models because of the complex learning 

techniques.  

 

 
Fig. 11 DNN feature importance plot of the DL model 

 

5 Conclusions 
 

Overall, this work emphasizes the importance of 

conducting a sensitivity analysis of various ML algorithms 

and examining their robustness against data manipulation 

techniques. Particularly, LGBM, XGBoost, RF, ETC, and 

CatBoost showed robustness in accurately predicting 

concrete spalling due to fire. In addition, these models 

performed well across various data scenarios and effectively 

identified the key factors influencing the fire-induced 

spalling of concrete. On the contrary, other algorithms that 

adopt more straightforward learning approaches performed 

poorly against the same data scenarios, such as SVM, 

GussianNB, and BernoulliNB. These results underline the 

need for careful model selection, data preprocessing, and the 

usage of multiple approaches to verify the outcomes and the 

evaluation scores and validate them.  

Hence, we believe that demonstrating that some models 

are more capable of predicting spalling and showing a 

consistently high performance is an indication of the 

robustness of these models and can be perceived as an 

opportunity to improve our spalling domain knowledge by 

integrating explainability and causality tools. This also opens 

a wide door for collaboration between structural fire 

engineers and data scientists to develop new algorithms that 

focus on the strong parts of the adopted models.  

 

• XGBoost, LGBM, and RF were the best-performing 

models across the entire analysis, achieving an 

accuracy score of 93.5%, 93.8%, and 91.5%, 

respectively. 

• The analysis shows that, in general, the evaluation 

metrics increase when using 100% of the data and 

decline with data reduction, which indicates the 
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need for more tests to improve the model’s 

performance and provide a robust predictive model. 

• While the balanced and stratified models yielded 

comparable accuracy and cross-validation scores, 

the AUC was significantly impacted by the 50% 

data reduction. 

• The key factors influencing spalling are maximum 

exposure temperature, heating rate, moisture 

content, compressive strength, PP fiber quantity, 

and silica fume /binder ratio. 

• The top-performing models achieved a relatively 

similar evaluation when training the models on the 

key factors and eliminating the other factors, 

indicating their high influence on the predictions.   

• The sensitivity analysis revealed consistent critical 

factors across all the top-performing models with 

slight changes in the magnitude of importance, 

validating their critical role in understanding and 

predicting the spalling phenomena. 

• DL model’s feature importance diverged from those 

identified by other models and existing literature, 

which might open the doors for further 

investigation regarding the data parameters and 

sizes.  

• The deep learning model provided a rare case where 

the model shows a high performance and results 

that do not match the existing literature. 
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