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ABSTRACT  

With the ever-growing surge of new technologies, there seems to be an ongoing inertia 

towards integrating automation and cognition into various engineering applications. Despite a 

number of initiatives, and oddly enough of all civil engineering sub-disciplines, the structural fire 

engineering and fire safety community continues to embrace a classical stance to tackle the 

problem of fire. In support of growing demands to adopt performance-based solutions, this paper 

showcases the potential of integrating Artificial Intelligence (AI) as a unique technology to assess 

performance and fire resistance of structures. More specifically, this study sheds light on the proper 

use of AI to derive temperature-dependent material models for wood, together with simple 

expressions that can be used to trace thermo-structural response of timber elements/components 

(i.e. floor assemblies, beams, columns, and connections). These expressions comprehend the 

naturally complex temperature-induced physio-chemical changes to timber properties, including 

creep and charring, and hence do not require input of such properties nor special computing 

software. The outcome of this study clearly shows the merit of utilizing AI to modernize fire 

resistance evaluation given that the developed AI-models have high degree of perception (i.e. learn 

from past behaviors) and ability to improve their prediction capability through independent and 

unsupervised learning.  

Keywords: Fire; Artificial intelligence; Timber; Structural members; Material property; Charring. 

1.0 INTRODUCTION 

The past few years have witnessed the rise of a momentum towards realizing sustainable 

and green infrastructure. Inspired by nature and determined to reduce the burden on the 
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environment, the number of upcoming projects utilizing timber as main construction material is 

seemingly rising. Common timber buildings (of two- to four-story) are now being replaced with 

taller buildings (of greater than six-story), much of which are primary built with improved 

engineered timber products [1]. As an example, the University of British Columbia (UBC) 

announced the completion of the 18-story, 53 m tall Brock Commons student residence, claiming 

the title of tallest timber structure in 2016 [2]. More recently, the city of Tokyo in Japan announced 

plans to build a 70-story, 350 m tall skyscraper made of 90% wood and 10% steel. This skyscraper, 

named W350, is expected to utilize more than 18.5 million cubic meter of timber and to be 

completed by 2041 [3]. Projects of this magnitude not only challenge our knowledge of timber 

construction but also add practical complexities on a number of fronts.  

Fortunately, there has been a good amount of research on traditional issues arising when 

designing (or building) a tall timber structure, i.e., weathering of wood, seismic and wind actions 

etc. [4]. On the other hand, extreme loading effects; such as fire, is one research area that continues 

to be deficient [1, 5]. The complexity of fire, both as a phenomenon and a load action, 

exponentially intensifies in case of timber construction, simply due to the fact that a structural 

system made of timber has the tendency to combust when exposed to fire. Not only that this 

structural system becomes vulnerable to fire-induced collapse, issues related to timely evacuation 

of occupants and proper firefighting in presence of high levels of smoke, especially when the main 

loading bearing system is burning, also become of critical importance [6]. Thus, predicting thermal 

and structural response of timber structures (or structural systems/members for that matter) is of a 

great interest to the civil engineering and construction community [5, 6].  
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In a traditional sense, fire resistance of timber members/assemblies can be evaluated 

through standard fire testing. It is quite amusing to note that such standard testing not only remains 

virtually unchanged for most of the last century, but is also costly to conduct, requires specialized 

testing facilities and attendance of certified personnel. Alternatively, fire resistance rating of 

commonly used timber elements can be obtained from tabulated data (or listings) complied from 

previous fire tests; whether published by testing agencies or listed in building codes and fire 

standards [7].  

In more recent years, this community seems to lean towards adopting advanced calculation 

methods as a mean to evaluate fire performance of structures. These methods apply rational 

engineering principles, mostly at section or member level, to determine fire resistance rating of 

timber members i.e. beams etc. Advanced calculation methods may encompass development of 

highly nonlinear finite element (FE) (or finite difference (FD)) numerical models that besides 

requiring a large number of input parameters and high computational capacity (e.g. workstations), 

they can only be developed by especially trained engineers/designers [8]. A side note to remember 

is that the validity of such numerical models stems from prior calibration against experimentally 

conducted fire tests. This, when combined with the fact that there is a serious absence of guidance 

on proper validation procedure, and more importantly on standardization with regard to selection 

of input parameters, computing capabilities and training expertise etc., present some of the main 

challenges that continue to hinder the use, as well as acceptance, of advanced calculation methods 

in fire engineering applications. 

Interestingly, many of the aforementioned challenges associated with standard fire testing 

and advanced calculation methods can be overcome by integrating a modern form of evaluation 
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methods. This form capitalizes on the concept of Artificial Intelligence (AI) to capture implicit 

relations, with varying levels of complexities, between various input parameters associated with 

fire phenomenon in structures. These approaches have been extensively used in a variety of 

engineering applications including structural engineering [9], material sciences [10], 

extraterrestrial exploration [12] etc. At the time of this study, a thorough examination of published 

works shows that the integration of AI-based techniques into structural fire engineering and fire 

safety applications is lacking, especially in the case of timber structures [12].  

One of the earliest studies to apply AI in fire engineering applications was carried out by 

Chan et al. [13]. These researchers developed a simple artificial neural network (ANN) to predict 

temperature-induced degradation of compressive strength of concrete. The developed ANN was 

first trained using data points obtained from small scale material tests and then this ANN was used 

to predict compressive strength of concrete with different mix batches under elevated temperatures 

[13]. In another study, McKinney and Ali [14] also developed an ANN to qualitatively evaluate 

fire-induced spalling phenomenon in concrete cylinders. Lazarevska et al. [15] developed a fuzzy-

neural network (FNN) to predict fire resistance rating of reinforced concrete (RC) columns 

exposed to fire conditions. This FNN proved suitable in situations where there is limited data 

available on features of RC columns.  

Erdem [16] developed an ANN to predict flexural capacity of RC slabs under fire 

conditions. This ANN accounted for various parameters such as compressive strength of concrete, 

yield strength of reinforcement, duration of fire exposure etc. and managed to achieve high 

accuracy with a correlation coefficient of 99.75%. Naser [17] managed to incorporate genetic 

algorithms (GA), a modern form of AI, to derive temperature-dependent material models for 
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structural steel. The AI-derived models were rigorously tested against actual structural members 

tested in full-scale fire tests and showed high prediction capability when compared against 

commonly used material models. In a notable study, Rein et al. [18] also integrated GAs to 

examine the kinetics of polyurethane foam in smoldering combustion scenarios. 

At the time of this work, there seems to be virtually no AI-based studies carried out to 

examine temperature-dependent properties of timber or response of timber elements under fire 

conditions. Thus, this work aims at developing AI-based models that utilize a hybrid combination 

of AI technologies, namely artificial neural network (ANN) together with symbolic regressions 

and genetic algorithms (SR & GAs), to comprehend the complex fire behavior of timber at the 

material and element (member) level. For a start, this study derives universal and temperature-

dependent constitutive material models for wood with due consideration to charring and creep 

effects. Further, this study also derives simple expressions capable of accurately evaluating fire 

resistance rating, temperature rise and deformation history within timber elements including floor 

assemblies, beams, columns, and connections. These expressions take into account critical 

parameters such as geometric features of timber members, level of applied loading, and fire 

exposure duration. A distinctive feature of these expressions is that they implicitly account for 

temperature-dependent material properties and hence do not require input of such properties nor 

special computing platform/software. These models can be used to predict thermo-mechanical 

behavior of timber members at any time of interest or throughout fire exposure duration until 

failure of element. The validity of these expressions was examined and cross-checked against fire-

tested timber members collected from open literature. Finally, the compiled databases used to 

develop the AI-models, which contains over 12,000 data points, will be made available for 
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interested researchers to further expand upon with the hope of enhancing accuracy of the derived 

expressions and development of improved models. 

2.0 ARTIFICAL INTELLIGENCE – A BRIEF BACKGROUND, AND INSIGHTS INTO 

MODEL DEVELOPMENT  

The first mention of artificial intelligence (AI) as a strategy to solve problems that defy 

solution through traditional computational techniques was noted at a workshop held in Dartmouth 

College in 1956 [19]. This concept mimics the cognition capability of the brain to exploit hidden 

patterns and implicit relations within data sets as to understand interaction between input 

parameters and then draw conclusions to physically represent a solution (or set of solutions) to a 

given problem or phenomenon [19]. Nowadays, AI is more of discipline that is built through close 

collaboration between various fields including computer science, mathematics, information 

theory, neuroscience etc. A quick review of literature shows that this discipline covers a number 

of techniques such as neural networks (NN), machine learning (ML), pattern recognition (PR) etc. 

A thorough discussion on history and differences between these technologies is not presented 

herein for brevity but can be found elsewhere [19, 20].  

From the point of view of this study, AI is a modern technology that seems to best suit the 

needs of fire engineering community for a variety of reasons. For a start, fire, a destructive force 

in nature, not only encompasses different fields (i.e. civil engineering, material sciences, fluid 

dynamics etc.) but its effects on structures are still not fully understood. Secondly, in a given fire-

based engineering problem, say design of a timber beam to achieve a satisfactory fire performance, 

a large number of variables (e.g. geometric and material features, load level, fire intensity etc.) 

exist and with high variabilities. Further, fire tests, the holy grail of evaluation methods, often 
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carried out to examine the response of structural members seem to suffer on a number of fronts, 

specifically those related to accessibility, reliability and reproducibility of test results. This is 

unlike other sub-disciplines in civil engineering, where experimental testing is more controlled 

and of high consistency. Moreover, codal provisions for fire design of structures are still immature, 

as compared to traditional loading actions, and these provisions significantly vary between 

countries and practicing engineers. This discussion clearly infers how our community is tackling 

a very complex phenomenon in which traditional assessment methods seem to struggle to 

adequately resolve. An attempt to integrate principles of AI into this field could be promising.  

Compared to traditional approaches, AI does not rely on pure mathematical models nor 

guidance to start an analysis. But rather, AI attempts to simulate the human-like thinking process 

in order to understand a phenomenon and is specifically suitable in scenarios where a large amount 

of inputs is available. By utilizing heuristic search enabled through evolutionary algorithms, an AI 

model tries to capture hidden patterns through adaptive learning and via systematic analysis of 

inputs and targeted output(s). Once an initial pattern is identified, this pattern becomes the first 

step to grasp the nature of the phenomenon on hand as to discover improved patterns with higher 

prediction capabilities. In essence, an AI model comprises of a number of visible and/or hidden 

layers and processing units; commonly called neurons. Neurons are often arranged to form an 

intelligent system (or network), with a similar layout to the human brain, that maintains a 

continuous interaction between functioning neurons and layers. In this network, the first layer 

contains the inputs (predictors) and is connected to a number of hidden layers with the ability to 

establish linear and/or non-linear models. The hidden layers are also connected to the output layer 

comprising of target variable(s) (or output(s)).  
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In this study, a number of phenomena related to fire response and performance of timber 

are examined on two scales; at the material and elemental (member) level. At the material side, 

thermal, mechanical and special temperature-dependent material properties of timber are collected 

to derive universal material models that represent how each property changes under elevated 

temperatures. These properties include density, thermal conductivity, specific heat, tensile 

modulus, compressive, tensile and shear strength of timber, as well as charring rate. At the member 

level, AI-based expressions that can be used to evaluate thermal response of timber floor 

assemblies, together with structural response of timber beams, columns and two types of 

connections, are derived. These models are developed using a hybrid combination of artificial 

neural network (ANN) provided in Matlab, together with symbolic regression and genetic 

algorithms (SR & GAs) [21]. 

In each case, input parameters were selected through a systematic procedure. For example, 

past and recently published works disseminating results of standard fire tests were first studied to 

identify critical parameters that influence fire response of wood and timber structures. These 

critical parameters were also selected based on observations and recommendations of previous 

works in order to arrive at expressions with optimum size and complexity that do not require 

complex computations and/or special software. Overall, the rationale behind identifying critical 

parameters stems from engineering judgment as well as findings and recommendations of various 

research articles and reports [22-68].  

For example, the structural response (i.e. mid-span deflection) of timber beam at any given 

point during exposure to a standard fire is said to be a result of stresses generated due to applied 

loading, P, as well as degradation to the beam’s sectional capacity (a function of geometric features 
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and material properties). Since P is constant during fire, then the mid-span deflection in this beam 

at a specific point in time is dependent upon the degradation in material properties and (i.e. how 

much timber has degraded till that point in time) as well as loss in cross section. Imagine this, for 

two identical timber beams made of the same wood and exposed to the same fire conditions, both 

beams will experience similar temperature rise and degradation in sectional capacity. However, in 

case one of the beams is loaded with P1 (where P1>P2 and P2 is applied to the second beam), then 

this beam will, 1) experience higher levels of deflection, and 2) fail at an early point in time (see 

Fig. 1).  
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Fig. 1 Illustration on effect of critical parameter for timber beam 

Thus, this study hypothesizes that in order to obtain mid-span deflection of a timber beam, 

all that is needed is duration of fire exposure, t, load level, P, initial depth and width, D and B, of 

the beam, in addition to the relation that connects these parameters to mid-span deflection. This 

relation is quite complex as it is a function of various parameters i.e. charring rate, properties of 

wood etc., yet can still be obtained by properly applying principles of AI. In other words, the 

rationale behind AI modeling is that since the final effect of fire (i.e. mid-span deflection, 

temperature rise across a member) is of interest, and since this effect is known (measured in fire 

tests), then a relation connecting such effect to loading (gravity and fire) as well as material and 

geometric features of a timber member can be obtained through AI. It should be noted that 

discussion on other critical parameters selected to represent timber floor assemblies, columns, and 

connections is provided in their corresponding sections. 

A number of databases are compiled to develop AI models. These databases were collected 

from actual fire tests obtained from open literature [22-68]. From each test, critical parameters (i.e. 

values of deformation at each point in fire exposure time as observed in the fire test and measured 

in time intervals of 1 minute, i.e. say 10 mm at 60 minutes, 12 mm at 65 minutes etc.) are collected. 

This procedure was replicated for various points in time for a particular timber member (e.g. floor, 

beam, column, connection) as well as for all other members selected to develop the AI models. 

Through this procedure, a particular AI model can relate fire exposure time to geometric features 

and applied load level on the timber beam and then derives an expression that relates fire effects 

(temperature rise, mid-span deflection etc.) to these parameters while implicitly accounting for 

material properties of timber. Hence, there is no a need to input temperature-dependent material 
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properties in the process of predicting temperature rise or deflection in a timber member. It should 

be noted that whenever possible, other factors such as loading configuration, timber type etc. were 

kept within an acceptable range (10-20%) of that the most commonly reported values. 

While it is true that selecting a few parameters, as discussed in the above rationale, 

simplifies the very complex behavior of timber structures under fire conditions, the following 

sections will show that this procedure still manages to capture the essence of thermal and structural 

response of timber structures with high accuracy. In any case, the developed AI-based framework 

is flexible and has the potential to include >15 independent (or dependent) input parameters for 

each timber element. All that is needed is to collect information on a new variable (i.e. moisture 

content) and to add this as a new input parameter to the AI model.  

Due to complexities associated with fire testing, and different styles in reporting outcome 

of fire experiments, a number of issues can arise. For example, in the case where a particular 

parameter such as moisture content, is only reported in few studies (and not all studies). This 

parameter was not selected to be a critical input parameter in order to maintain homogeneity and 

unbiasness between all input parameters. In the case where such a parameter is deemed necessary, 

then data points associated with tests in which moisture content of timber is not reported would 

need to either be “removed” from the databases or given “assumed” values. One should note that 

applying the first action reduces the amount of available input data points for training the AI model, 

and that applying the second action might jeopardize prediction accuracy of the AI model. Some 

of the numerical techniques that can be used to accommodate similar issues will be briefly 

highlighted in a later section towards the end of this study.  
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3.0 DEVELOPMENT OF DATABASES 

As discussed earlier, the development of an AI-based framework requires collecting large 

number of inputs covering material properties, as well as thermal (cross sectional temperature) and 

structural (deformation, failure time) points obtained from actual fire tests on wood and timber 

structural members. Thus, the first step into developing fire test databases to be input into the AI-

based models entitles conducting a thorough literature review to identify notable and related works 

in which timber elements were tested under standard fire conditions. This section highlights some 

of these studies and provides further insights into the development of the proposed models. It 

should be noted that over 12,000 data points were collected and will be made be available for use 

and download upon request.  

3.1 Material level    

 

The fire response of timber structures is mainly governed by thermal, mechanical and 

special properties of timber. While thermal properties determine temperature rise and propagation 

within timber, the mechanical properties govern degree of temperature-induced loss in strength 

and stiffness and eventually magnitude of fire-induced loss in load carrying capacity. In general, 

thermal and mechanical properties vary with temperature and are highly influenced by timber 

material phase changes (i.e. pylorisis) that occur at elevated temperature. The representations 

(relations) of how material properties of timber change (degrade) with temperature rise are often 

available in fire design codes and standards (i.e. Eurocode 5), as well as published studies [22-68]. 

A closer examination of these relations reveals that there is distinct variation in describing 

temperature-dependent material properties. This is attributed to the differences in testing methods, 

testing set-ups, specimen sizes and styles of reporting. It is due to such differences that fire design 
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of timber continues to be a complex procedure. In fact, this is the driving force behind this study 

as the application of AI is intended to derive unique and universal material models that can best 

describe the behavior of wood and timber members under elevated temperatures. Since timber is 

an anisotropic material with hundreds of species that can be used in construction, this study mainly 

uses published properties accepted for general fire design of timber structures (i.e. parallel to 

grain). A typical database for a material property (i.e. thermal conductivity) is shown in Table 1. 

Table 1 Sample database for a material property (i.e. thermal conductivity)  

Source Temperature (°C)* Value of thermal conductivity (W/m.K) 

E
u
ro

co
d
e 

5
 [

2
2

] 

20 0.12 

… … 

200 0.15 

… … 

1200 1.5 

A
S

C
E

 [
2
3
] 20 0.11 

… … 

1000 0.165 

…
 … … 

*Temperature increments were taken to be in 10°C. 

3.1.1 Thermal properties  

 

The thermal material properties are those that influence temperature rise and distribution 

across a cross section made of timber. These properties comprise of density, thermal conductivity, 

and specific heat and their behavior depend on the composition and characteristics of timber 

species and moisture content. The density of timber, ρ (kg/m3), defined as the mass of a unit 

https://doi.org/10.1016/j.firesaf.2019.02.002


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.firesaf.2019.02.002   

 

Please cite this paper as:  

Naser M.Z. (2019). “Fire resistance evaluation through artificial intelligence - A case for timber structures.” Fire 

Safety Journal. Vol. 150, pp. 1-18. (https://doi.org/10.1016/j.firesaf.2019.02.002).  

 

14 

 

volume, is often in the range of 300-700 kg/m3, wherein density of white cedar ≈ 300 kg/m3, 

Douglas firs (430 to 480 kg/m3), southern pines (510-580 kg/m3), and hickory ≈ 700 kg/m3. Due 

to the continuous evaporation of moisture and drying, the density of wood tends to decrease with 

rise in temperature, reaching about 20-40% at 350°C (see Fig. 2) [22-28]. 
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(b) Thermal conductivity  

 
(c) Specific heat 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 200 400 600 800 1000 1200

T
h

e
rm

a
l 

co
n

d
u

ct
iv

it
y

 (
W

/
m

.K
)

Temperature (C°)

Eurocode 5 (2009) ASCE (1992)

Thomas (1997) Knudson et al. (1975)

Janssens (1994) Hadvig (1981)

Mehaffey et al. (1994) Gammon (1987)

Fuller et al. (1992) Konig and Walleij (2000)

Fredlund (1993) Tabaddor (2008)

Harmathy (1988) Benechou et al. (2001)

Menis (2012) Frangi (2001)

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200

S
p

e
ci

fi
c 

h
e

a
t 

(k
J/

k
g

.K
)

Temperature (C°)

Eurocode 5 (2009)

ASCE (1992)

Knudson (1973)

Fuller et al. (1992)

Konig and Walleij (2000)

Fredlund (1993)

Frangi (2001)

Mehaffey et al. (1994)

Gammon (1987)

https://doi.org/10.1016/j.firesaf.2019.02.002


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.firesaf.2019.02.002   

 

Please cite this paper as:  

Naser M.Z. (2019). “Fire resistance evaluation through artificial intelligence - A case for timber structures.” Fire 

Safety Journal. Vol. 150, pp. 1-18. (https://doi.org/10.1016/j.firesaf.2019.02.002).  

 

16 

 

Fig. 2 Thermal properties of timber at elevated temperatures  

Another thermal property is thermal conductivity, k. Thermal conductivity, a measure of 

how timber conducts heat, has a value of ranging between 0.1 to 0.2 W/m.K at ambient conditions 

and up to 200°C. The thermal conductivity of timber generally reduces between 200-320°C and 

then increases due to the higher conductivity of dry layers [26-29]. Finally, the specific heat, Cρ, 

is a property that describes the amount of heat required to raise a unit mass of timber a unit 

temperature. The specific heat of timber is about 1.8-2 kJ/kg.K at ambient conditions and raises 

with a sharp peak once temperature in timber reaches 100°C to represent the latent heat of 

vaporization of the water within the timber (if not dry). After this point, specific heat of timber 

drops to a level close to its value at room temperature.  

A good amount of documentation is available on thermal properties of timber under 

elevated temperatures. For example, Eurocode 5 [22], AS 1720.4 [30] and American Society of 

Civil Engineers (ASCE) structural fire protection manual [23] provide recommendations to such 

properties in terms of graphs and tabulated values. Other notable studies include those carried out 

by Adl-Zarrabi et al. [31], Bénichou et al. [32], Menis [33], Frangi [34], and [35-46]. Data points 

complied from all of these studies are plotted in Fig. 2. As stated earlier, data plotted in this figure 

clearly show that there is a large variation in describing temperature-dependent thermal properties 

of timber.  

3.1.2 Mechanical properties  

 

The mechanical properties of constituent materials determine the extent of strength loss 

and stiffness deterioration in timber. These properties mainly comprise of Young’s modulus (E), 

compressive (fc), tensile (ft) and shear strength (fv) of wood. Unlike tests carried out to evaluate 

thermal properties of wood, the mechanical properties of wood were mainly reported up to 250-
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350°C. This is because timber tends to lose much of its load bearing capabilities beyond this 

temperature range. Similar to thermal properties, the open literature contains a good amount of 

documentation on mechanical properties of wood under elevated temperatures. Some of these 

studies are listed herein and include Eurocode 5 [22], AS 1720.4 [30], ASCE structural fire 

protection [23], Thomas and Buchanan [47], Ostman [48], as well as [49-61]. It is worth noting 

that a thorough review on mechanical properties of wood at low and elevated temperatures is 

presented by Gerhards [61]. 

Figure 3 presents how mechanical properties of wood deteriorate at elevated temperatures. 

This figure shows that mechanical properties generally decrease with rise in temperature. This 

degradation follows a linear trend and can start at relatively low temperature slightly exceeding 

75°C. It is interesting to note that some material models, such as that proposed by Jong and Clancy 

[53] shows that modulus of wood reduces to about 20% of its initial strength at 100°C, while other 

models such as that adopted by Eurocode 5 [22] and ASCE [23] show degradation of about 50% 

and 5%, respectively (possibly due to the fact that these models were carried out on moist timber 

and/or account for temperature-induced creep while others do not). Similar observations can also 

be made in the case of compressive and tensile strength properties of wood. 
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(a) Young’s modulus (in tension) 
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(c) Tensile strength 

 
(d) Shear strength 

Fig. 3 Mechanical properties of wood as a function of elevated temperatures 

 

3.1.3 Special property (Charring) 

 

Charring is a unique property of wood. Charring occurs as a result of pyrolysis of timber 

and takes place in the narrow temperature range of 260-300°C [22, 23]. Charred wood has virtually 

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400

R
e

d
u

ct
io

n
 f

a
ct

o
r

Temperature (C°)

Eurocode 5 (2009)
ASCE (1992)
Ostman (1985)
Thomas (1997)
Schaffer (1970)
Konig (2005)
Konig and Walleij (2000)
Schaffer (1984)
Knudson and Schneiwind (1975)
Lau and Barret (1997)

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400

R
e

d
u

ct
io

n
 f

a
ct

o
r

Temperature (C°)

Eurocode 5 (2009)

Sano (1961)

Ohsawa and Yoneda (1978)

https://doi.org/10.1016/j.firesaf.2019.02.002


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.firesaf.2019.02.002   

 

Please cite this paper as:  

Naser M.Z. (2019). “Fire resistance evaluation through artificial intelligence - A case for timber structures.” Fire 

Safety Journal. Vol. 150, pp. 1-18. (https://doi.org/10.1016/j.firesaf.2019.02.002).  

 

20 

 

no strength and low thermal conductivity. It is due to this low thermal conductivity that charred 

layers thermally insulate interior (core) of wood. Charring rate is governed by a number of factors 

including wood species and fire exposure etc. Although charring rate may reduce as the insulating 

charred layer grow with extended exposure to fire, charring can still be considered to occur with a 

constant rate throughout the duration of fire. Many design codes specify constant charring rates in 

their provisions. For instance, Eurocode 5 gives a charring rate of 0.6-0.75 mm/min for softwood 

and 0.5 mm/min for hardwoods. Figure 4 shows charring depth as a function of exposure time to 

standard fire as proposed by fire codes and researchers such as AS 1720.4 (1992), White and 

Nordheim (1992), Lawson et al. (1952), Schaffer (1967), Schnable and Turk (2006), and Fredlund 

(1988). In general, the charred depth increases linearly with fire exposure time. 

 

Fig. 4 Charring depth in wood exposed to standard fire 
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3.2 Element (member) level  

Databases were also developed to be input into another set of AI models specifically 

designed to derive simple expressions that can be used to evaluate thermal or structural response 

of timber structural elements. These elements include, floors assemblies, beams, columns, and two 

types of connections (nail-based and finger-joints). These expressions take into account critical 

parameters such as geometric features of elements, adhesive type, fire exposure duration, among 

others. A unique feature of these expressions is that they implicitly account for temperature-

dependent material properties of timber as well as associated fire phenomena; such as charring. 

Another feature is that these models can be used to predict fire response of timber members at a 

particular point in time or throughout fire exposure duration until failure of element. Due to the 

different objectives of each AI-derived expression, specific details on developed database for each 

type of members is presented in corresponding sections below.  

3.2.1 Fire tests carried out on floors assemblies 

Sultan et al. [62] carried out an extensive experimental program at the National Research 

Council Canada (NRCC) to examine fire resistance and performance of unrestrained lightweight 

wood frame floor assemblies protected with Type X gypsum board. This program comprised of 

over 70 fire tests in which full-scale load-bearing wood joist floor assemblies were exposed to the 

ULC/ASTM standard fire exposure (which is similar to ASTM E119 standard fire). Sultan et al. 

[62] investigated a number of parameters including; gypsum board screws spacing, insulation type 

and installation process, joist spacing and depth, resilient channel installation, sub-floor topping, 

number of sub-floor layers, and load magnitude. A typical configuration of these assemblies is 

shown in Fig. 5.  
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Fig. 5 Typical configuration of selected assemblies for analysis [62] 

Due to the large number of studied parameters by Sultan et al. [62], and for the sake of this 

study, only fifteen floor assemblies were identified to showcase how AI can be used to derive a 

simple expression that can be used to predict thermal response (i.e. temperature rise) across a floor 

assembly. These assemblies were made of similar wood joists (depth = 235 mm and spacing = 406 

or 610 mm), installed with resilient channels, and subjected to varying magnitudes of loading 

(3830-5027 MPa)*. The key parameters in these floor assemblies are fire exposure duration, t, 

number of layers in ceiling finish, C, thickness of sub-floor, kth, as well as type of insulation used 

in cavity, I. The output obtained from the AI model is temperature rise in the plywood subfloor 

                                                 
*It should be noted that an assumption is made herein that the magnitude of loading does not affect temperature rise 

in the floor assembly.  
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located at inner face of cavity. Table 2 lists the selected input parameters used to developed AI-

based model. 

Table 2 Sample database for AI model used to derive an expression to predict thermal response of 

floor assemblies.  
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3.2.2 Fire tests carried out on beams  

 

Fahrni et al. [63] tested six spruce glulam beams under four point bending while being 

exposed to standard fire conditions simulating that of ISO 834 fire. These beams had a span of 

3,800 mm and a rectangular cross section of nominal width and height of 158 and 250 mm, 

respectively. The average bending strength and stiffness in these beams was 35.5 and 12,961 MPa, 

respectively. The average moisture content in beams was measured at 11%. These beams were 

exposed to fire from three sides and sustained a maximum bending moment of about 20-30% of 

their room temperature moment capacity. All beams had an average charring rate ranging between 

0.63-0.72 mm/min. This study was primarily selected to show the merit of AI as only the structural 

response (mid-span deflection) of these beams was reported (and not the thermal response). Unlike 
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simplified or advanced calculation methods, structural modeling through AI can be carried out 

without the need to obtain thermal response of beams first (given that all beams were exposed to 

similar fire conditions). Out of the six beams, only four were selected to develop a database. The 

selected input parameters in this database are; duration of exposure to fire, t, load level, P, height, 

H, and charring rate, β, and the output parameter is mid-span deflection, ∆ (see Table 3).  

Table 3 Sample database for AI model used to derive an expression to predict structural response 

of glulam beams.  
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3.2.3 Fire tests carried out on columns 

Unlike AI models developed in the above two sections, the AI model herein was primarily 

developed to understand the relation between critical parameters associated with determining fire 

resistance rating for timber columns. The required data points needed to develop a special database 

for such a model was obtained from the works of Malhotra and Rogowski [64] and well as Stanke 

et al. [65]. These researchers carried out a large number of standard fire tests on glued-laminated 

columns to examine effect of key parameters (such as wood species, cross section shape, and level 
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of loading) on fire resistance of columns, and to derive simple relations to predict fire resistance 

ratings. Fortunately, the Technical Report No. 10 [66], prepared by the American Wood Council 

(AWC), managed to compile both critical parameters as well as fire ratings associated with tested 

columns by aforementioned researchers. These properties are listed in Table 4 and include, column 

depth, D, column breadth, B, compressive strength of timber, fc, specific gravity of timber, SG, and 

level of applied loading, P, among others. This database compiled points from 58 fire tests.  

Table 4 Sample database for AI model used to derive an expression to predict fire resistance rating 

of columns.  

Parameter/Beam 
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… … 140-400 140-400 0.31-0.59 22-62 9-41 … 

*The level of applied loading was calculated as the ratio between induced load/resisting capacity [66]. 

3.2.4 Fire tests carried out on connections  

 

Two types of connections were selected in this study, i.e. finger-joint, and nailed joint 

connection. Thus, a specific AI model was developed for each type of connection. As a result, two 

separate databases were compiled. These databases were obtained from the published works of 

Klippel and Frangi [67], and Norén [68], respectively.  
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Klippel and Frangi [67] investigated fire behavior of solid and bonded finger-jointed timber 

connections. In this study, 49 finger joints were loaded with a constant tensile load parallel to grain 

direction with varying load levels while being exposed to ISO 834 fire from two sides. These 

researchers also investigated the performance of a number of structural adhesives including, 

emulsion-polymer-isocyanate (EPI), polyurethane (PUR): P2, P3, P4, P6 and P7, melamine-urea-

formaldehyde resin (MUF), urea-formaldehyde resin (UF), phenol-resorcinol-formaldehyde resin 

(PRF) and polyvinyl acetate (PVAc). The finger-jointed connections varied in adhesive type, A, 

width, W, charring rate, β, and applied loading, P. The AI model used for this connection type was 

designed to arrive at fire rating, FR, of connections (see Table 5). Additional details on these 

experimental tests can be found in Klippel and Frangi [67]. 

Table 5 Sample database for AI model used to derive an expression to predict fire resistance of 

finger-joint connections. 

Conne

ction 

No. 

Inputs Output 

Time, 

T 

(min) 

Adhesive type, A 
Width, W 

(mm) 
Load level, P (%) 

Charring 

rate,  β 

(mm/min) 

Fire 

resistance, 

FR (min) 

… … 

S
o

li
d

 =
 0

 

M
U

F
*
 

E
P

I 
=

 7
 

P
U

R
*

*
 

P
R

F
 =

 8
 

U
F

 =
 1

1
 

P
V

A
c 

=
 1

2
 

8
0
 

1
4

0
 

2
0

0
 

2
0
 

3
0
 

4
5
 

5
8
 From 0.57 

to 0.80 
… 

*MUF M1.1 and M1.2 = 1, MUF7.1, 7.2, 10.1, 10.2 =10, **PUR P2 = 2, PUR P3 = 3, PUR P4 = 4, PUR P6= 5, PUR P7= 6. 

 On the other hand, Norén [68] tested a number of nailed connections loaded in the range 

of 10-60% of the failure load at normal temperature. The connections were made of spruce wood, 

conditioned at 20°C and 65% relative humidity, with final moisture content of 14%. The oven dry 

density of wood used in these connections was reported in the range of 381 to 422 kg/m3. Norén 
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[68] tested four series and those grouped under series two were selected for analysis herein. The 

dimensions of the central members are 120×45 mm and side members of 20×120×280 mm. Both 

central and side members are joined with nails of 2.8 mm diameter and length of 52 mm. Each 

connection had 12 nails and was loaded in single shear (see Fig. 6). The point-side penetration 

including the nail tip was 32 mm. The nails were spaced at distances of 28 mm parallel to the grain 

and at distances of 20 mm transverse to grain. The distance between nails and loaded edges of the 

members was 28 mm and between nails and unloaded edges was 40 mm. Since Norén [68] reported 

results on ten connections (in terms of connection slip as a function of fire exposure time), then 

the AI model was developed to arrive at expressions that can capture this behavior. The input 

parameters were, duration of fire exposure, t, and load level, P. The output is slip, δ, at various 

times.   

 

 

 

 

 

 

 

 

 

Fig. 6 Layout of nailed connection as tested by Norén [68] (top: side view, bottom: top 

view) 
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4.0 PERFORMANCE AND VALIDATION OF AI-BASED DERIVED EXPRESSIONS  

Once the databases were prepared, these databases were first input into the neural network 

tool in Matlab for analysis and then processed through genetic algorithms [21]. In this algorithm, 

candidate solutions are encoded with terminal nodes corresponding to variables that best describe 

a given phenomenon; which in this study cover material property, thermal and structural response 

of timber and timber structural elements. The candidate solutions are derived using symbolic 

regressions to describe the unique relation between input parameters, i.e. fire exposure time (t), 

compressive strength of timber (fc), applied load level (P) etc., and output (e.g. temperature rise, 

mid-span deflection, fire resistance rating etc.). Each relation comprises of mathematical functions 

such as addition, multiplication etc. A fitness function is usually governed by the difference 

(absolute or squared error) calculated between values predicted by a candidate solution and those 

measured through fire tests described above, with parsimony corrections to favor simple and 

compact expressions. 

Out of all complied data points, 70% of the collected data is used to train the AI-based 

cognitive framework and the remaining 30% were used to validate and test the performance of the 

developed AI-derived expression as recommended by previously published works [14, 15, 17]. 

Further, additional data points compiled from tests that were not included in the databases were 

also used to cross-check the validity of the AI models (see Sec. 5.0). In general, the compiled input 

parameters were randomly arranged in order to eliminate any biasness. In this study, thirteen 

expressions are derived. These expressions, together with their coefficient of determination (R2), 

correlation coefficient (R), and mean average error (MAE) as obtained from the AI-based models 

are listed in Table 6. Further, plots showing validation of derived expressions (against training 
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data) as well as performance (against published works) are shown in Fig. 7. Overall, the plotted 

figures show a good agreement between predicted and measured points and this shows the validity 

and accuracy of the developed AI models. It is worth noting that few numerical examples are 

provided in the appendix to show how to properly collect input parameters and to use these derived 

expressions in predicting thermal and structural response of timber elements.  
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Table 6 AI derived expressions to evaluate fire response of timber elements and components  

Case Derived expressions 
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(a) Thermal conductivity  (b) Validation against fire tests  
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(c) Specific heat (d) Validation against fire tests 

  

(e) Density (f) Validation against fire tests 
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(g) Young’s modulus (in tension) (h) Validation against fire tests 
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(i) Compressive strength (j) Validation against fire tests 

  
(k) Tensile strength (l) Validation against fire tests 
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(m) Shear strength (n) Validation against fire tests 
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(o) Charring depth  (p) Validation against fire tests 

 

 
(q) Temperature across floor assemblies (r) Validation against fire tests 
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(s) Mid-span deflection in beams (t) Validation against fire tests 
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(u) Fire rating of columns (v) Validation against fire tests 
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(w) Slips in nailed connections (x) Validation against fire tests 

0

10

20

30

40

50

60

0 10 20 30 40 50 60

M
e

a
su

re
d

Predicted

0

10

20

30

40

50

60

0 5 10 15 20 25

S
li

p
 (

m
m

)

Time (min)

Specimen with 10% loading - measured

Specimen with 10% loading - predicted

Specimen with 35% loading - measured

Specimen with 35% loading - predicted

Specimen with 60% loading - measured

Specimen with 60% loading - predicted

https://doi.org/10.1016/j.firesaf.2019.02.002


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.firesaf.2019.02.002   

 

Please cite this paper as:  

Naser M.Z. (2019). “Fire resistance evaluation through artificial intelligence - A case for timber structures.” Fire Safety Journal. Vol. 150, pp. 1-18. 

(https://doi.org/10.1016/j.firesaf.2019.02.002).  

 

42 

 

 

 
(y) Fire resistance of finger joints connections (z) Validation against fire tests 

Fig. 7 Validation and performance of AI-derived expressions 
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5.0 APPLICABILITY OF AI-DERIVED EXPRESSIONS TO NEW SCENARIOS 

As discussed above, the derived expressions were validated against 30% of the input 

data points for the developed databases (as 70% of data points were used to train the AI-

models). Due to the simplicity of tackled phenomena, this validation process carried out in Sec. 

4.0 is expected to be suitable for expressions used to arrive at temperature-dependent material 

properties of timber. However, in the case of expressions derived to trace thermal and structural 

response of fire-exposed timber elements, an additional step was carried out herein to ensure 

proper validation of the AI-derived expressions. Thus, to further validate the predictability of 

the derived expressions, predictions obtained from these expressions were compared against 

data points measured in fire tests that were independently collected and were not included in 

the developed (training-based) databases. This further ratifies the validity and adaptability of 

the derived expressions in new scenarios to which they have not been exposed to earlier.  

The validity of the proposed expressions for tracing temperature rise in floor assemblies 

was examined by predicting thermal response of three floors tested by Sultan et al. [62] and 

were not part of the training process discussed in Sec. 4. These floors were assembly 18, 13 

and 5 which had no insulation, rock fiber insulation and glass fiber insulation, respectively. In 

the case of timber beams, Beam 6 was a glulam beam tested by Fahrni et al. [63] and was not 

included in the developed database for training, and hence was selected to cross-check the 

validity of the AI-derived expression in predicting mid-span deflection of beams. This beam 

has a height of 217 mm, charring rate of 0.7 mm/min, and was subjected to an applied loading 

of 30% of its room temperature capacity.  

Further, some of the columns that were tested by Malhotra and Rogowski [64] and well 

as Stanke et al. [65] were kept outside the developed databases. These columns were then used 

to examine the prediction capability of the proposed expression to evaluate fire resistance of 
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timber columns. These columns, i.e. CP16, FU1, H20A, R27C, vary in geometric features, 

specific gravity, compressive strength of wood, and level of applied loading. Similarly, fire 

resistance rating of four finger-jointed connections (no. 3, 9, 31, and 39), as well as two nailed 

connections (loaded with 15% and 45% of initial capacity) were also examined as these 

connections were not part of the training procedure. The applicability of the derived 

expressions in capturing fire response of these timber members, which were not part of the 

training-based databases, is plotted in Fig. 8. 
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(a) Timber floors  (b) Timber beams  
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(c) Timber columns (d) Finger-jointed connections  
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(e) Nailed connections 

Fig. 8 Cross-checking to validate AI-derived expressions using structural members/components that were not part of the training 

procedure 
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It can be seen that the derived expressions managed to successfully capture the thermal 

and structural response of most timber elements and components. The derived expressions 

appear to accurately trace the thermal response of floor assemblies without insulation and that 

insulated with rock fiber insulation. The expression also captures the thermal response of the 

third assembly (insulated with glass fiber), despite over-predicting temperature rise between 

15 and 25 minutes of exposure to standard fire. The AI-expression in the case of timber beams 

captures the mid-span deflection of Beam 6 up to failure. The proposed expressions to evaluate 

fire resistance of columns and finger-jointed connections seem to have good correlation as well. 

In a similar manner, the slip response of nailed connections (loaded with 15% and 45%) was 

also accurately captured till failure (in spite of predicting lower slips towards the end of fire 

exposure).  

Overall, and as one would expect, the level of accuracy of predictions obtained from 

AI-derived expressions, for thermal and structural response of timber members, is much higher 

in cases obtained from the developed databases and share common features and are of close 

proximity to the specimens used in training/developing the AI models. More advanced 

expressions with higher extrapolating capabilities are currently being developed and will be 

presented in future studies. 

6.0 PRACTICAL IMPLICATIONS AND FUTURE RESEARCH NEEDS  

 

With the rapid rise of technology, especially with regard to developing algorithms and 

efficient computing systems, it is a matter of time before AI is utilized to understand fire 

engineering phenomena. Results of this work clearly demonstrates the merit for utilizing 

AI/machine learning into developing contemporary design tools that could modernize the field 

of structural fire engineering and fire safety. One of the best qualities of AI modeling is that it 

can account for large number of variables at once, a feature not available in fire testing or 
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traditional simulations [69-71]. Unlike fire testing or advanced simulations/calculation 

methods, AI modeling is quick, quite affordable and can be carried out with minimum 

supervision. For example, instead of developing a complex 3D thermo-structural FE model to 

predict mid-span deflection of a glulam beam (which may not fully account for specific 

phenomenon such as charring), all that is needed is to apply the AI-derived expression 

presented in Table 6 without the need to supply any temperature-dependent material properties, 

software licensing or development of complex models.  

From the point of view of this study, the reader should realize that the simplicity of AI 

modeling does not come easily. For example, the accuracy and prediction capability of an AI 

model primarily depends on the number of observed/measured input data points. In a similar 

analogy, increasing the number of input data points to an optimal degree would work similarly 

to reducing the size of element (mesh) or size of time-step (iteration) in a finite element model. 

While this is often accompanied with a noticeable improvement in accuracy of predicted 

results, this often comes with a significant increase in computational time and resources in the 

case of advanced simulations (and not in AI modeling). Thus, a balance between accuracy and 

computational resources needs to be realized. Establishing such a balance, specifically tailored 

towards structural fire engineering and fire safety problems, is a key challenge that requires 

further investigation.  

From this field’s perspective, the amount of available fire tests is limited, with even 

fewer tests carried out with duplicated specimens, specimens with comparable 

features/properties, or tested under similar conditions [72]. This appears to be another key 

challenge associated with AI modeling when it comes to structural fire engineering and fire 

safety applications. In order to overcome some of the aforementioned challenges, our 

community needs to work together to compile results of previous tests, to plan for new fire 
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tests, as well as to generate databases similar to the ones developed here. These tests are to be 

designed taking into account that results of such tests would be used in AI-based modeling, 

training, and validation. A unique feature of AI-based models is that they are flexible enough 

to learn from their past mistakes and to improve overtime; once additional data points are 

available. As a result, the proposed tests can be undertaken in stages during which different 

versions of AI-based models and expressions can be developed. Another solution would be to 

develop validated FE models that can be used to generate raw input data points to be used in 

AI-models and databases. This option was not applied in this study but is hoped to be examined 

in a future work as well as by fellow researchers.  

It is anticipated that future experimental and numerical efforts may lead to developing 

state-of-the-art AI-based models within the next 5-15 years. Due to the limited fire tests, the 

presented expressions in this preliminary study are only applicable to certain configurations 

and fire conditions. Future AI-models are expected to accommodate different construction 

materials (i.e. timber, steel, concrete etc.), more complex cross-sections, various fire conditions 

(i.e. travelling fire, realistic fire, design fire etc.), account for interaction of structural members 

(e.g. composite assemblies, system level analysis etc.), varying restraint conditions, as well as 

complex phenomena (viz. charring in timber, fire-induced spalling and creep in construction 

materials etc.). While this study promotes AI modeling as a modern technology to carry out 

fire resistance evaluation, this technology is best used in conjunction with traditional fire 

resistance evaluation methods at least for the time being. 

7.0 CONCLUSIONS 

This paper promotes integrating principles of artificial intelligence into structural fire 

engineering applications. More specifically, this study presents a view into development of AI-

derived expressions capable of accurately predicting both thermal and mechanical/structural 

response of timber at the material and elemental level. These expressions were explicitly 
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derived with due consideration to temperature-dependent material properties as well as 

associated fire phenomena; such as charring and creep, and as such do not require input of such 

properties nor special computing platform/software. The following conclusions could also be 

drawn from the results of this investigation: 

• There is a need to develop simple and modern approaches in order to improve current 

state of fire resistance evaluation, analysis and design. These approaches can 

conveniently be derived through principles of AI. 

• The derived AI-based expressions are able of accurately predicting thermal and 

structural response of timber at material and member level. 

• A number of challenges continue to hinder full utilization of AI-based approaches, such 

as limited population of fire tests, as well as guidance on to using AI technologies etc. 

Some of these challenges can be overcome through collaborative work and between 

researchers and interdisciplinary efforts. 
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8.0 NOMENCLATURE 

A Adhesive type 

B Column breadth (mm) 

C Number of layers in ceiling finish 

Ch Charring depth (mm) 

Cρ Specific heat (kJ/kg.K) 

D Column depth (mm) 

E Young’s modulus (MPa) 

fc Compressive strength (MPa) 

FR Fire resistance (min) 

ft Tensile strength (MPa) 

fv Shear strength (MPa) 

H Height of beam (mm) 

I Type of insulation used in cavity 

k Thermal conductivity (W/m.K) 

kth Thickness of sub-floor (mm) 

P Load level (%) 

RF Reduction factor for material property  

SG Specific gravity of timber 

t Fire exposure duration (min) 

W Width of finger-joint connection (mm) 

β Charring rate (mm/min) 

∆ Mid-span deflection (mm) 

δ Slip in nailed connection (mm) 

ρ Density (kg/m3) 
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10.0 APPENDIX  

This appendix illustrates two examples with full procedure into applying the AI-derived 

expressions as to evaluate thermal and structural response of timber elements subjected to 

standard fire conditions.   

10.1 Example 1 – Temperature rise in a timber floor assembly  

In order to evaluate temperature rise in a timber floor assembly, such as that tested by 

Sultan et al. [62] and shown in Fig. 5, the following parameters were collected from assembly 

no. 18 of the same study and are listed herein: 

Point in time, t = 30.8 min. 

Number of layers in ceiling finish, C = 2 

Sub-floor thickness, kth = 15.5 mm 

 

Uninsulated assembly, I = 0 

 

Temperature rise at a point in time (say 30.8 min) can be evaluate using the following 

AI-derived expression: 

𝑇 = 11.2 +
𝑘𝑡ℎ + 0.255𝑡2

𝐶𝐼 + 𝐶
+

0.047 cosh(0.133𝑡 sin(−0.091𝑡))

asin(sin(17.8𝑘𝑡ℎ))
− 27 sin(−0.091𝑡) 

Such that: 

𝑇 = 11.2 +
(15.5)+0.255(30.8)2

2(0)+2
+

0.047 cosh(0.133(30.8) sin(−0.091(30.8)))

asin(sin(17.8(15.5)))
− 27 sin(−0.091(30.8)) = 84.5°C, 

which is within 4.1% of the measured value (88°C). 

The same expression can also be used in an iterative procedure to evaluate temperature 

rise throughout fire exposure. A comparison between measured and predicted results is shown 

in Fig. 8a. 
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10.2 Example 2 – Fire resistance in a timber column  

In order to evaluate fire resistance rating of a timber column similar to that tested by 

Malhotra and Rogowski [64], column CP16 is selected for analysis. This column has the 

following features: 

Depth, D = 142 mm 

Breadth, B = 381 mm 

Specific gravity, SG = 0.38 

Compressive strength, fc = 22 MPa 

Level of applied loading, P = 23% 

Fire resistance of this column can be evaluated using the following AI-derived 

expression: 

𝐹𝑅 = 44.18 + 19.67 ln(𝑓𝑐) + 0.0073𝐷𝐵𝑆𝐺 − sin(0.7𝐷𝐵𝑆𝐺) asinh(0.0073𝐷𝐵𝑆𝐺) −

60.36 − 327.95𝑆𝐺 − 19.67 ln(𝑃) − 0.0022𝐷𝐵 − 1.1 × 10−9(𝐷𝐵)2  

Such that: 

𝐹𝑅 = 44.18 + 19.67 ln(22) + 0.0073(142 × 381 × 0.38) − sin(0.7 × 142 × 381 ×

0.38) asinh(0.0073(142 × 381 × 0.38)) − 60.36 − 327.95(0.38) − 19.67 ln(0.23) −

0.0022(142 × 381) − 1.1 × 10−9(142 × 381)2 = 38.5 𝑚𝑖𝑛 ≈ 39 min (measured in the fire 

test carried out by Malhotra and Rogowski [64]). 
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