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Abstract 7 

The traditional approach to formulating building codes is often slow, labor-intensive, and may 8 

struggle to keep pace with the rapid evolution of technology and domain findings. Overcoming 9 

such challenges necessitates a methodology that streamlines the modernization of codal 10 

provisions. This paper proposes a machine learning (ML) approach to append a variety of codal 11 

provisions, including those of empirical, statistical, and theoretical nature. In this approach, a codal 12 

provision (i.e., equation) is analyzed to trace its properties (e.g., engineering intuition and causal 13 

logic). Then a ML model is tailored to preserve the same properties and satisfy a collection of 14 

similarity and performance measures until declared equivalent to the provision at hand. The 15 

resulting ML model harnesses the predictive capabilities of ML while arriving at predictions 16 

similar to the codal provision used to train the ML model, and hence, it becomes possible to adopt 17 

in line with the codal expression. This approach has been successfully examined on seven 18 

structural engineering phenomena contained within various building codes, including those in 19 

North America and Australia. Our findings suggest that the proposed approach could lay the 20 

groundwork for implementing ML in the development of future building codes. 21 
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1.0 Introduction 23 

Building codes are guiding documents that home rules and recommendations aimed to standardize 24 

civil engineering guidelines and processes pertaining to design, analysis, construction, etc. (ASCE 25 

2016). Such codes remain the cornerstone of civil engineering, providing a framework to establish 26 

building occupants' safety, health, and general welfare.  27 

The process of creating codal provisions begins with collecting and analyzing data, often gathered 28 

from past building failures, tests, simulations, and empirical/practical experiences gained from 29 

well-documented incidents. All such data is systematically archived, studied, and evaluated to 30 

understand and learn from it to avoid repeating past failures (Ellingwood 1994). The same is then 31 

formulated and incorporated into the building codes. For instance, the International Building Code 32 

(IBC) (IBC 2018) stipulates the minimum standards for various aspects, like structural integrity 33 

and fire safety. By complying with such codes, engineers can minimize the risk of building 34 

collapse, fire hazards, and other potential accidents. Thus, adherence to codal provisions is not 35 

merely voluntary but a legal obligation and ethical responsibility (Law 2021). The open literature 36 

shows various cases where non-compliance with building codes resulted in catastrophic loss of 37 

life and property (Windapo and Cattell 2010; Yakubu 2019). 38 

Many codal guidelines are communicated via equations (formulas). These formulas display the 39 

key parameters and the relationship of how such parameters are tied to a specific phenomenon. 40 

For example, Eq. 1 shows that the moment capacity of compact W-shaped steel beams is a function 41 

of the plastic section modulus, Z, and the yield strength (fy) of the structural steel. In this format, 42 

an engineer can simply predict and/or evaluate the expected moment capacity of a given beam via 43 
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Eq. 1. More importantly, an engineer may also causally infer that an increase in either (or both) 44 

parameters can increase the moment capacity of the beam (and vice versa).  45 

𝑀 = 𝑓𝑦 × 𝑍            (1) 46 

While some formulas stem from the deterministic nature rooted in physics and engineering 47 

principles, others are probabilistic, empirical, or arrived at via statistical methods (Lie 1992; 48 

Marasco et al. 2021). Despite the origin of codal provisions, variants of such provisions exist in 49 

building codes. Building committees have been noted to accept such variants as without these 50 

committees, provisions would not have been accepted and included in building codes.  51 

In recent years, machine learning (ML) has shown great success in many fields, including civil 52 

engineering. ML models can analyze vast datasets, identify complex patterns, and make accurate 53 

predictions. A look into the existing literature displays studies wherein predictions from ML are 54 

reported to exceed those obtained from national and international building codes (Aladsani et al. 55 

2022; Cakiroglu et al. 2022; Degtyarev and Tsavdaridis 2022; Naser 2023b; Tarawneh et al. 2021; 56 

Yahiaoui et al. 2023). This begs the question of how we can leverage such models. 57 

However, ML models differ significantly from codal provisions. At the moment, most ML models 58 

remain driven by the supplied data. For instance, where a building code might specify an equation 59 

to calculate wind loads based on the height and location of a building, a ML model would first be 60 

trained to use a database of historical wind data and building performance to predict the same 61 

phenomenon easily. While ML models may excel at making predictions based on the patterns in 62 

the training data that may indeed surpass predictions obtained from codal provisions, the same 63 
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models can struggle when confronted with scenarios or data that significantly deviate from their 64 

training set (Krueger et al. 2021).  65 

Furthermore, the dynamic nature of ML models, which are often updated and changed as they 66 

learn from new data, contrasts sharply with the static nature of building codes (which are updated 67 

but at a much more infrequent rate). For instance, the specifics of the ML model (algorithmic 68 

architecture, hyperparameters, etc.) used to predict a specific phenomenon may change 69 

significantly over time as the model is fed with new data. This may present a potential issue for 70 

engineers who rely on consistency in their design processes (Paleyes et al. 2022).  71 

Perhaps, most importantly, is this lack of transparency of some ML models. This opaqueness can 72 

pose difficulties when attempting to integrate ML models into building codes, as these codes need 73 

to have clearly defined and understandable criteria so that engineers can follow and verify 74 

compliance (Naser and Ross 2022). While the data-driven nature of ML is its strength, it is 75 

fundamentally elemental not to overlook the value of engineering principles, intuition, and domain 76 

knowledge – especially in our field where decisions can impact occupants’ safety (Naser 2021b).  77 

Understandably, engineers may remain skeptical of ML models due to the above challenges and 78 

the absence of a regulatory framework that allows such models to be included in building codes. 79 

This absence of a framework means there are no defined standards to follow. This lack of standards 80 

makes it difficult for engineers to fully trust and adopt ML models. For example, engineers might 81 

be wary of using an ML model if there is not a universally accepted standard for such ML models. 82 

Given the absence of a structured way to integrate ML models into the design and construction 83 
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processes outlined by the building codes, engineers often opt for traditional, code-approved 84 

methods – even in scenarios requiring performance-based principles or out-of-the-box solutions.  85 

On a more positive note, the rapid advancements in ML have now allowed the integration of 86 

eXplainable AI (XAI), both of which can help create more reliable and interpretable models that 87 

could be adopted into building codes. These two concepts refer to methods and techniques that 88 

allow users (i.e., engineers) to understand ML models' decision-making processes (Emmert-Streib 89 

et al. 2020). For instance, if a ML model could explain that it predicts a specific outcome (e.g., 90 

sectional capacity) based on specific characteristics of the building design (such as material 91 

properties and geometric features), engineers would be more confident in integrating these insights 92 

into their work than if the ML was a traditional blackbox model. Simply, if a ML model can explain 93 

its decisions in a way that aligns with the stipulations of codal provisions, this could significantly 94 

enhance the potential for ML's integration into these codes.  95 

Providing transparency and a deeper understanding of the underlying relationships in the data can 96 

bridge the gap between the dynamic, data-driven world of ML and the static, more calm nature of 97 

building codes. From this lens, this paper proposes such a methodology. In this methodology, the 98 

first stage analyzes a codal equation to trace its properties (e.g., logic). Then, a ML model is 99 

tailored to learn and map the same logic – thereby transforming into a higher-order model that 100 

preserves the same properties of the codal equation. Finally, the ML model is tuned on big data to 101 

achieve superior performance, given the ability of ML to accommodate highly nonlinear relations. 102 

Our findings indicate that the proposed approach could set the stage for ML implementation in 103 

future building codes. While significant research and development are needed to refine these 104 
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techniques and demonstrate their reliability and effectiveness in the context of civil engineering 105 

and the involvement of regulatory and code-developing organizations, this work and its findings 106 

hope to jump-start a serious conversation toward such an effort. 107 

2.0 A look into codal provisions 108 

Codal provisions often undergo a series of iterations and must bypass rigorous discussions/voting 109 

by regulatory bodies, committee members, and the general public. Such provisions are commonly 110 

developed from first principles (i.e., mechanics). In the event that first principles are absent or 111 

immature, provisions can also be derived through statistical treatment of the outcome of physical 112 

tests or, to a lesser extent, numerical simulations.  113 

In physical tests, a series of specimens are designed with preset features identified by various 114 

means (including empirically) and tested to generate an understanding that ties the examined 115 

features to the phenomenon at hand (i.e., flexural response). The outcome of such an investigation 116 

is then analyzed via statistical regression. To a certain extent, civil engineers favor using linear 117 

and nonlinear regression (Benjamin and Cornell 2014). Both forms of regressions home a number 118 

of assumptions that need to satisfy the data at hand as well as those pertaining to pre-selected 119 

parametric forms (e.g., the use of linear regression implies the validity of linear and additive nature 120 

of features, etc.) some of which may or may not be satisfied.  121 

Evidently, a proper statistical regression analysis reduces to finding the best coefficients that can 122 

improve the accuracy of the pre-selected parametric form from the available tests/simulations data 123 

(Ribarič et al. 2008). Such an expression is further treated to attain the expected reliability 124 

measures inherently required by a building code's technicalities. Once such an expression is fully 125 
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verified, vetted, and voted upon, this expression is likely to be incorporated into a guiding 126 

document. This procedure has been duly noted in our literature, and one of the recent examples is 127 

that developed by Kuchma et al. (2019), credited with updating the one-way shear design 128 

provisions for reinforced concrete in the latest ACI 318 code adopted by the American Concrete 129 

Institute.  130 

Depending on the comprehensiveness of a testing campaign, it is quite likely that additional tests 131 

or numerical simulations can be added to supplement the data at hand. For example, Franssen and 132 

Dotreppe (2003) followed a similar approach when developing the basis for Eurocode 2’s 133 

assessment method for the fire resistance of columns. Similarly, Wade et al. (1997) combined tests 134 

with numerical simulations to derive an equation to evaluate the fire resistance of reinforced 135 

concrete columns for the Australian building code (AS3600). Other examples can also be found 136 

elsewhere (Feldman and Bartlett 2005; Ollgaard et al. 1971). 137 

This work argues that, with the presence and/or absence of first principles, and when the primary 138 

motivation behind utilizing statistical-based expressions in building codes is their capacity to best 139 

fit existing data, then it is of merit to utilize higher-order models (such as those that fall under tree-140 

based and neural network models, etc.) also capable of best fitting the data in a more accurate 141 

manner than that provided by the traditional counterparts. Noting how such models can better 142 

handle high dimensional data, has non-parametric freedom, and less adherence to data-related 143 

assumptions positions this method for creating suitable codal provisions. 144 

A supporting philosophical view is that, for the same data and features, the statistical-based 145 

procedure of iteratively fitting a codal expression by best-fitting the coefficients of its predefined 146 
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form can be viewed similarly to training a ML model to learn patterns in the available data (see 147 

Fig. 1). A primary difference is that the data at hand tune the coefficients for the already-defined 148 

parametric form of the former and the algorithmic logic (internal model structure) for the latter. 149 

One can then view the parametric form to be equivalent to the algorithmic logic since both tie the 150 

key parameters into arriving at the predictions. Yet, a critical difference between the above two 151 

approaches is that we are familiar with the procedure of statistical regression and, hence are able 152 

to trace the steps carried out to interpret the outcome of such analysis. As will be seen in Sec. 3, 153 

recent advances in explainability have now made this possible for ML (Molnar 2019).  154 

155 

 156 

Fig. 1 A simplified illustration depicting two approaches for prediction (please note that 157 

additional steps could be involved (i.e., training, fitting, etc.) in a prediction problem). 158 

3.0 Proposed methodology     159 

3.1 General description 160 

Suppose the same logic and properties of an empirical codal provision (i.e., equation) were 161 

imposed on a superior high dimensional ML model. In this case, such a model can be considered 162 

a natural substitute for the statistically-derived equation, as the model can now arrive at predictions 163 

and interpret their outcomes similar to the codal equation.  164 

This becomes of importance as, in reality, while many of the phenomena tackled by civil engineers 165 

may not fully conform to the assumptions inherent in statistical methods used to derive empirical 166 

expressions, engineers still apply domain knowledge to assign the position and interaction between 167 

Input (X1, X2, ...) f =(a×X1+b×X2+...) Output 

Input (X1, X2, ...) Algorithm Output 
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the involved parameters fitted into such expressions. Thus, the proposed methodology starts by 168 

constraining the algorithmic structure of a candidate ML model to one that imitates the same 169 

characteristics (in terms of engineering logic, domain knowledge, etc.) and the essence of the codal 170 

provision at hand.  171 

This process is defined herein as model equivalence. While there could be multiple ways to 172 

establish equivalence (as will be detailed in Sec. 5.0), this work establishes equivalence by 173 

leveraging two eXplainable artificial intelligence methods, namely partial dependence plots (PDP) 174 

and accumulated local effects (ALEs) to constrain the algorithmic structure to yield PDPs/ALEs 175 

similar to those obtained from the codal equation (to a pre-specified degree). Such a degree is 176 

outlined via several similarity measures, five of which will be presented below. Finally, and once 177 

equivalence is established, model predictions are compared against those obtained from the codal 178 

equation via statistical measures. This section starts by covering the principles of PDP/ALE and 179 

then dives into the similarity measures selected to establish equivalence. 180 

3.2 Equivalence through partial dependence plots (PDP) 181 

The PDP explains ML models by depicting an individual (or more) feature's marginal effect on 182 

the prediction of a ML model while holding other features constant (Friedman 2001). The same 183 

plot can also be used to infer the type of relationship between each feature and the target. A PDP 184 

is created by varying the feature of interest across its range, and for each value, we make a 185 

prediction using the ML model or codal equation, holding all other features constant at their 186 

average values. The average prediction is then plotted against the values of the feature of interest 187 
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to show the marginal effect of that feature on the predicted outcome. Mathematically, the partial 188 

dependence of a model f with respect to a set of features XS can be defined as: 189 

𝑃𝐷𝑃𝑋𝑆
=

1

𝑛
∑ 𝑓(𝑋𝑆, 𝑋𝐶𝑖

)𝑛
𝑖=1           (2) 190 

where XCi are the remaining features for the i-th observation, and n is the number of observations.  191 

The key insight behind PDPs is that by averaging out the effects of all other features, then this tool 192 

can isolate the effect of the feature of interest. Thereby, the relationship between the target and a 193 

feature can be revealed. Fig. 2 illustrates a hypothetical PDP obtained from a ML model and from 194 

a physical equation. This PDP can show how changing the feature at hand while keeping all other 195 

features constant affects the predicted target. In this figure, one can see that the hypothetical 196 

model’s PDP has a similar trend and behavior, to some extent, to that of the hypothetical equation. 197 

This implies that model and equation predictions are within certain a certain bound (i.e., 198 

percentage).  199 

 200 

Fig. 2 A demonstration of PDPs [Note: the target and feature are assumed to be unitless for 201 

demonstration purposes.]  202 
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3.3 Equivalence through accumulated local effects (ALE) 203 

While PDPs provide valuable insights, they can be biased when features are correlated because 204 

PDPs treat features independently. Thus, ALEs are another tool that can be used to explain ML 205 

models. However, unlike PDPs, ALEs provide a more accurate representation when features are 206 

correlated. For example, ALEs provide a way to visualize feature effects by taking into account 207 

the average effects of other features. Hence, ALE plots can be especially useful when there are 208 

interactions between features. ALEs handle interactions between features by only considering the 209 

local effects; hence they are not biased by global correlations like PDPs. They also are centered 210 

around the average prediction over the training data, which makes them easier to interpret in terms 211 

of the average prediction.  212 

The ALE of a feature is calculated by accumulating its local effects (i.e., the difference between 213 

the prediction for a slightly higher value of the feature and the prediction for a slightly lower value 214 

for the same feature, averaged over the dataset). To calculate ALE, we first divide the feature of 215 

interest into intervals. For each interval, we compute the difference in the model's predictions at 216 

the upper and lower bounds of the interval while keeping other features constant. This difference 217 

is then accumulated across the intervals to obtain the ALE plot. Mathematically, the ALE for a 218 

feature xi can be expressed as: 219 

𝐴𝐿𝐸𝑥𝑖
=

1

𝑛
∑ [𝑓(𝑥𝑖,𝑗+1, 𝑋−𝑖) − 𝑓(𝑥𝑖,𝑗 , 𝑋−𝑖)]𝑛

𝑖=1        (3) 220 

Where xi,j is the value of feature xi for the j-th observation, and X-i are the remaining features. 221 
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The following example can come in handy to better compare PDPs and ALEs. For example, a PDP 222 

might show how the predicted sectional capacity changes with the cross-sectional area while 223 

averaging out the effect of the material strength. If there is a strong interaction between the cross-224 

sectional area and the material (e.g., if changing the material significantly affects how the cross-225 

sectional area influences the capacity), this interaction effect could be hidden in a PDP. On the 226 

other hand, suppose there is an interaction between the cross-sectional area and the material of the 227 

load-bearing member. An ALE plot can capture this interaction by showing the effect of changing 228 

the cross-sectional area on the predicted capacity, considering the material feature's average effect. 229 

For visualization purposes, both PDP and ALE are quite similar.  230 

3.4 Detailed description of the proposed approach  231 

The key challenge herein is that both PDP and ALE are only generated once model training is 232 

completed. In other words, these tools cannot be manipulated during the training process, and there 233 

is no direct way to train ML models to yield PDPs and ALEs that fit some criteria. Similarly, the 234 

traditional way of tuning model parameters (i.e., hyperparameters) to improve model accuracy 235 

cannot be applied herein to arrive at pre-specified PDPs and ALEs. Simply adjusting model 236 

parameters directly to match the PDPs and ALEs of the physical equation can be quite challenging 237 

because PDPs and ALEs are, as mentioned above, not directly connected to the model's 238 

parameters. Therefore, this challenge is inherently nontrivial and would involve creating a loss 239 

function that incorporates the discrepancy between the model's PDPs/ALEs and the target 240 

PDPs/ALEs and then optimizing this loss function to find the best parameters.  241 
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Thus, a new approach is proposed herein. This approach utilizes learning by indirect feedback. 242 

Rather than adjusting the model parameters directly to fit the PDPs and ALEs of the equation, we 243 

will be slightly adjusting the training data based on the discrepancy between the ML model's 244 

PDPs/ALEs and the equation's PDPs/ALEs and re-train the model on this adjusted data. Simply, 245 

we tune the ML model, and one of the means of tuning the model (among other standard methods 246 

often used in ML analyses) includes a step wherein the discrepancy between the PDPs/ALEs is 247 

minimized. 248 

As will be demonstrated in the to-be-presented case studies, this approach has the potential to 249 

guide the ML model to learn the correct behavior (as defined by the PDPs and ALEs of the physical 250 

equation) while still being able to fit the actual data. This approach can transfer the embedded 251 

empirical scientific knowledge from codal provisions into ML and can be particularly useful in 252 

situations where we have a good understanding of the underlying physics or other processes, but 253 

the actual data is noisy or incomplete, so a purely data-driven model may not be accurate or 254 

reliable. In other words, while a traditionally-trained ML model can achieve high accuracy (as will 255 

be shown in the presented case studies), such a model does not generally attain PDPs and ALEs 256 

that match those from codal provisions. However, the proposed approach ensures that a ML will 257 

realize matching PDPs/ALEs and high predictive accuracy.  258 

More specifically, the proposed approach entails the following steps: 259 

1. Training an initial ML model and then calculating the PDP and ALE for each feature.  260 

2. Then, computing the differences between the PDPs and ALEs of the model and those of 261 

the equation an engineer want the model to match. 262 

https://doi.org/10.1061/JSENDH.STENG-12934
https://doi.org/10.1061/JSENDH.STENG-12934


This is a preprint draft. The published article can be found at: https://doi.org/10.1061/JSENDH.STENG-12934.  

 

Please cite this paper as:  

Naser M.Z., (2024). Integrating Machine Learning Models to Building Codes and Standards: Establishing Equivalence 

through Engineering Intuition and Causal Logic. ASCE Journal of Structural 

Engineering. https://doi.org/10.1061/JSENDH.STENG-12934.         
 

14 

 

3. The calculated differences are then used to adjust the target variable by iterating over each 263 

unique value in a feature and adjusting the target variable for all instances with a feature 264 

value in a certain interval. 265 

4. The adjustment is calculated as the product of the learning rate (calculated using a decay 266 

formula = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒/(1 + 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 × 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛), the difference in PDPs or 267 

ALEs, and a sensitivity parameter that represents how sensitive the target is to changes in 268 

this feature. 269 

o More specifically, The adjustment is calculated as follows: 270 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑝𝑑𝑝 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑝𝑑𝑝 × 𝑝𝑑𝑝 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒[𝑖] × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑝𝑑𝑝 271 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑎𝑙𝑒 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒𝑎𝑙𝑒 × 𝑎𝑙𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒[𝑖] × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑎𝑙𝑒 272 

o Here, Learning ratepdp and learning rateale are the learning rates for the PDP and 273 

ALE, respectively, calculated using a decay formula, which measures how quickly 274 

the model should adjust its predictions based on the differences. pdp difference[i] 275 

and ale difference[i] represent the absolute difference between the model's 276 

PDP/ALE and the equation's PDP/ALE for the current feature value. sensitivitypdp 277 

and sensitivityale are the sensitivities of the output to the feature for PDP and ALE, 278 

respectively. These measure how much the output changes with respect to a small 279 

change in the feature. The adjustments are then applied to the target values ('FR') 280 

in the training data where the feature value is between the current value and the 281 

next value.  282 
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5. This adjustment is then added to the target variable for all instances where the feature value 283 

falls within a certain range. 284 

6. The process is repeated until the maximum number of iterations (default is set to 100) is 285 

satisfied or until the differences between the model's PDPs and ALEs and the equation’s 286 

PDPs and ALEs fall below a certain similarity threshold as defined per each measure. 287 

o If the model's PDPs/ALEs are similar to the equation effect's PDPs/ALEs (as per 288 

the predefined similarity measures), the process continues to the next feature. If not, 289 

the targets in the training data are adjusted based on the differences, and the model 290 

is re-trained. 291 

o If similarity is not achieved for all features within the maximum number of 292 

iterations, the algorithm moves on to the next measure. 293 

7. After looping over all measures, a similarity check is examined to verify if the similarity 294 

was achieved for all features for all measures.  295 

o If so, each model that satisfies a specific measure is retained.  296 

8. Finally, an ensemble model is created using all the retained models. The PDP and ALE for 297 

the ensemble model are calculated. This ensemble model, therefore, represents a 298 

combination of models, each trained for a different measure and adjusted for each feature, 299 

based on the differences between the model's PDPs/ALEs and the equation's PDPs/ALEs.  300 

As one can see, there are three main loops, a similarity measures loop, an iteration loop, and a 301 

feature loop. Depending on the scenario at hand, an engineer can opt to choose if each loop needs 302 

to satisfy one/all measures, iterations and/or features. Similarly, the number of iterations may need 303 
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to be adjusted per problem/equation. After testing this approach for a number of problems, it 304 

became clear that a balance across the three loops is to be accomplished. In most cases, arriving at 305 

an ensemble with models satisfying 2-3 measures, all features, and within the maximum number 306 

of iterations seems to yield balanced results. Additional testing and verification are likely to 307 

continue in the future.  308 

3.5 Similarity measures  309 

As mentioned above, the relationships between features in building codes are governed by physical 310 

equations/provisions. Thus, if a ML model is developed to mimic these physical processes, then 311 

PDP and ALE of the model need to also mimic the logic of the physical equation. The elemental 312 

idea here is that if the PDP and/or ALE of a feature in the model follows the same trend as the 313 

physical equation, this implies that the ML model has learned the underlying engineering intuition 314 

and causal logic of the physical process. For example, if the physical equation describes a linear 315 

relationship between a feature and its target, and the PDP or ALE of these variables in the model 316 

also shows a linear relationship, this would suggest that the model has learned this relationship. 317 

Now, we move to present the selected similarity measures. These measures were selected to be 318 

largely independent of each other to maximize their strengths and minimize their limitations. The 319 

derivation of these measures can be found in their respective works cited below.  320 

3.5.1 Normalized Euclidean distance 321 

The normalized Euclidean distance function calculates the Euclidean distance between two vectors 322 

and then normalizes this distance by the number of elements in the vectors (see Fig. 3) (Bernardin 323 

et al. 2017). Normalizing the distance by the number of elements is a way to make this measure 324 
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scale independent. This can be useful when comparing distances across datasets with different 325 

numbers of elements. The Euclidean distance is the straight-line distance between two points in 326 

space and is calculated as: 327 

𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)2 + ⋯ +(𝑝𝑛 − 𝑞𝑛)2         (4) 328 

where p and q are two points in an n-dimensional space. This measure returns a zero if the shapes 329 

are identical and unity when completely dissimilar (the default setting was arbitrarily chosen as 330 

0.25 in this study).  331 

 332 

Fig. 3 Illustration of the normalized Euclidean distance measure (presented in dashes) 333 

3.5.2 Fréchet distance 334 

The Fréchet distance is another measure of similarity between two curves that takes into account 335 

the location and ordering of the points along the curves (Aronov et al. 2006). This measure is 336 

formally described as the length of the shortest leash required to let a pet and its owner walk along 337 

their separate paths, where the pet and the owner can vary their speed but cannot go backward (see 338 

Fig. 4). The Fréchet distance function implemented here calculates the discrete Fréchet distance 339 

between two curves, represented as arrays, and results in a single value (with the same units as the 340 
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target value) representing the similarity between the two curves. This measure assumes that the 341 

curves are continuous and connected and that the order of points along the curve matters. Since 342 

this measure returns similarity in the same units as the target, a default setting was arbitrarily 343 

chosen as 10% of the observed target observation in this study). 344 

 345 

Fig. 4 Illustration of the Fréchet distance measure (presented in dashes)  346 

3.5.3 Bounding measure 347 

The custom bounding measure calculates an upper and a lower bound based on a specified 348 

threshold (see Fig. 5). The idea is to determine whether the PDP/ALE values from the ML model 349 

fall within a certain range of values defined by a physical equation. The measure returns the 350 

proportion of model values that fall within the bounds. This measure assumes that the physical 351 

equation provides a ground truth range of acceptable values. One should note that the choice of 352 

threshold is arbitrary (taken as 10% in this study) and that this measure does not take into account 353 

the order of the values.  354 

https://doi.org/10.1061/JSENDH.STENG-12934
https://doi.org/10.1061/JSENDH.STENG-12934


This is a preprint draft. The published article can be found at: https://doi.org/10.1061/JSENDH.STENG-12934.  

 

Please cite this paper as:  

Naser M.Z., (2024). Integrating Machine Learning Models to Building Codes and Standards: Establishing Equivalence 

through Engineering Intuition and Causal Logic. ASCE Journal of Structural 

Engineering. https://doi.org/10.1061/JSENDH.STENG-12934.         
 

19 

 

 355 

Fig. 5 Illustration of the bounding measure (presented in dashes) 356 

3.5.4. Coefficient of determination and correlation coefficient  357 

In addition to the above four measures, two commonly used statistical measures can be used to 358 

establish similarity between PDPs or ALEs of a model and a physical equation: the R2 (coefficient 359 

of determination) and the correlation coefficient (r) are also used. The R2 represents the proportion 360 

of the variance for a dependent variable that is explained by a/number of features in a model. The 361 

r, on the other hand, measures the strength and direction of a linear relationship between two 362 

variables. In the context of comparing PDPs or ALEs of a model and a physical equation, a high 363 

R2 or r approaching unity would suggest a high degree of similarity. A similarity of more than 70% 364 

was deemed to be strong, as noted in (Smith 1986).  365 

𝑅2 = 1 − ∑ (𝑃𝑖 − 𝐴𝑖)
2𝑛

𝑖=1 / ∑ (𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2𝑛
𝑖=1         (5) 366 

𝑅 =
∑ (𝐴𝑖−𝐴𝑖)(𝑃𝑖−𝑃𝑖)

𝑛

𝑖=1

√∑ (𝐴𝑖−𝐴𝑖)2
𝑛

𝑖=1
∑ (𝑃𝑖−𝑃𝑖)2

𝑛

𝑖=1

          (6) 367 

where, A: actual measurements, P: predictions, n: number of data points.  368 
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3.6 Machine learning models 369 

Five ML algorithms were used herein, and these were selected as they are commonly used 370 

algorithms in our domain, as noted in a recent survey (Tapeh and Naser 2022). All ML algorithms 371 

are used in their default settings (including hyperparameters) for transparency and to allow 372 

repetition of the proposed approach. The following sections briefly describe such algorithms, and 373 

their full description and scripts can be found in their respective references, as cited below. The 374 

specific script used in creating the provided analysis can be requested from the author.  375 

3.6.1 Decision trees (DT) 376 

A decision tree is a supervised ML algorithm that uses a tree-like graph of decisions and their 377 

possible consequences (Naser 2021a). It is a flowchart-like structure, where each internal node 378 

denotes a test on a feature, each branch represents an outcome, and each leaf node holds a class 379 

label. The process of constructing a decision tree involves selecting features to test at each node in 380 

the tree to minimize the total variance of the target variable among the instances at each node. 381 

There are several strategies for making this choice, but a common one is to use information gain, 382 

which is related to the concept of entropy (a measure of impurity) (Kent 1983).  383 

3.6.2 Random Forest (RF) 384 

Random Forest (RF) is a versatile ensemble learning algorithm that combines the power of 385 

decision trees and randomization techniques (Breiman 2001). The RF algorithm constructs an 386 

ensemble of decision trees by randomly selecting subsets of the training data and features. The 387 

individual trees are trained independently using the selected subsets, and their predictions are 388 

aggregated to produce the final prediction. Each decision tree in the RF ensemble is built using a 389 
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random subset of the training data (known as bootstrap aggregating or bagging). This random 390 

sampling process helps to reduce the risk of overfitting and improves the model's generalization 391 

ability. Additionally, the algorithm selects a random subset of features at each split in the tree 392 

construction, introducing diversity among the trees and reducing the impact of individual features. 393 

3.6.3 Extreme gradient boosted trees (XGboost)  394 

XGBoost is based on the gradient boosting framework (Scikit 2020; XGBoost Python Package 395 

2020). Gradient boosting is a method that goes through cycles to iteratively add models into an 396 

ensemble. It begins by initializing an ensemble with a single model, whose predictions can be 397 

pretty naive. Then, the algorithm begins to add new models that aim to correct the errors of the 398 

combined ensemble. In this way, the models are added sequentially until no further improvements 399 

can be made. One of the main improvements that XGBoost brings for tree-like models is a more 400 

regularized model formalization to control overfitting, which tends to be a problem with gradient 401 

boosting.  402 

3.6.4 Light gradient boosting machine (LGBM) 403 

The Light Gradient Boosting Machine (LGBM) is an improvement over the XGboost as it 404 

combines the strengths of gradient boosting and the LightGBM framework to achieve high 405 

performance (Ke et al. 2017). This optimizes the objective function by iteratively fitting new trees 406 

to the negative gradient of the loss function with respect to the current predictions. The final 407 

prediction is obtained by summing the predictions of all the trees. The exclusive feature bundling 408 

technique in LGBM groups data points in a near-lossless way, leveraging similarities within the 409 
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data. This technique improves computational efficiency by reducing the number of distinct feature 410 

values and enabling efficient memory usage during the training process. 411 

3.6.5 Support Vector Machines (SVM) 412 

The Support Vector Machines (SVM) algorithm aims to find the optimal hyperplane that 413 

maximally separates the data points (Scikit n.d.). The objective is to minimize the deviation or 414 

error between the actual data points and the hyperplane while considering the regularization 415 

parameters. To handle non-linearly separable data, SVM utilizes kernel functions to transform the 416 

input data into a higher-dimensional feature space where it becomes linearly separable.  417 

3.7 Performance metrics    418 

Once the ensemble is created. This ensemble is trained by randomly shuffling and training the data 419 

into training (T), validation (V), and testing (S) sets. The ensemble is trained and validated against 420 

the T and V sets and then examined on the S set following a k-fold cross-validation procedure, 421 

wherein the collected dataset was randomly split into test and training sets of k = 10 groups. The 422 

ensemble is trained using nine unique sets and validated on the tenth remaining set until each 423 

unique set is used as the validation set. 424 

Then, in lieu of the above discussed measures selected to verify and compare the similarity 425 

between the PDPs/ALEs of the ML model and codal provision, the validity of the created ML 426 

models is also examined through another independent performance metric, namely, the Mean 427 

Absolute Error (MAE) as listed below, as well as R2 (Naser et al. 2021; Tapeh and Naser 2022).  428 

𝑀𝐴𝐸 =  
∑ |𝑃𝑖−𝐴𝑖|𝑛

𝑖=1

𝑛
           (7) 429 
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4.0 Case Studies 430 

Seven phenomena and their respective codal provisions are used herein to showcase and verify the 431 

proposed methodology. These are presented in the order of their complexity (i.e., the number of 432 

involved features). Two phenomena are taken from ACI 318 (Building Code Requirements for 433 

Structural Concrete and Commentary). Two phenomena were curated from ASCE29 (Standard 434 

Calculation Methods for Structural Fire Protection), wherein one phenomenon also appears in the 435 

Technical Report no. 10 by the National design specification (NDS) for wood construction. The 436 

fifth phenomenon is taken from the Australian Building Code (AS3600) for concrete construction. 437 

The sixth case study is taken from the American Institute of Steel Construction (AISC) Steel 438 

Construction manual. The final case study is present in multiple building codes as it deals with the 439 

elastic deformation of beams. 440 

Each phenomenon was examined with data that satisfies the practical range of the codal provision 441 

at hand, and this data also satisfy the recommendations of the recent researchers aimed to establish 442 

the health of data (Van Smeden et al. (Smeden et al. 2018) with a minimum set of 10 observations 443 

per feature, Riley et al. (Riley et al. 2019) with a minimum set of 23 observations per feature, and 444 

Frank and Todeschini (Frank and Todeschini 1994) with a minimum ratio between the number of 445 

observations and features as 3 and 5). In addition, a random ML algorithm from those listed earlier 446 

was selected for each case study to create the tuned ensemble, and the other algorithms were used 447 

without tuning (i.e., without being incorporated into the proposed equivalence approach) for 448 

comparison. The rationale behind the decision is to show the proposed approach's wide 449 

applicability and maintain the page limitation of this work, as examining each individual ML 450 
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model for each case study pushed the size of this paper beyond what is commonly expected. All 451 

case studies used the default settings listed above. In the upcoming PDP and ALE figures, the 452 

reader must remember that the vertical axis represents the partial and accumulated effects on the 453 

target instead of the target itself. 454 

4.1 ACI318: Code Section 19.2.3.1 on modulus of rupture  455 

In the context of building design and construction, the tensile strength of concrete is particularly 456 

important as it helps to determine the concrete's ability to resist tensile and torsional forces, as well 457 

as cracking (say due to environmental factors like temperature changes and freeze-thaw cycles, 458 

etc.). The tensile strength of concrete is generally only about 10% of its compressive strength and 459 

measures the force required to break/crack concrete.  460 

Although the tensile strength of concrete increases with an increase in the compressive strength, 461 

the ratio of the tensile to the compressive strength decreases as the latter strength increases. The 462 

tensile strength is often approximated proportionally to the square root of the compressive strength 463 

of concrete. More specifically, ACI 318 Code Section 19.2.3.1 the modulus of rupture for normal 464 

strength concrete for use in calculating deflections as obtained from statistical analysis (see 465 

(McNeely and Stanley 1963; Raphael 1984)): 466 

𝑓𝑟 =  7.5√𝑓𝑐
′            (8) 467 

As one can see, this is a simple statistical equation and presents a suitable candidate for a first case 468 

study. Thus, the presented approach above will be applied to creating a ML ensemble that mimics 469 

this equation. Due to the simplicity of this problem, one similarity measure (normalized Euclidean 470 
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distance) was used. Upon the successful tuning of the ensemble, the R2
ensemble was unity and 471 

MAEensemble was calculated at 0.192, and the same metric, when calculated for the RF (without 472 

tuning), was at 0.203, implying a 5.4% improvement in accuracy. The outcome of this approach 473 

is presented in Fig. 6. This figure shows that the PDP and ALE of the equivalent ensemble (made 474 

from RF) match well throughout the full series with the above codal equation. It is also worth 475 

noting that the PDPs and ALEs from all tree-based algorithms also matched those of the codal 476 

equation well. This can indicate that such models can predict this phenomenon without actually 477 

being tuned. This working hypothesis is being examined at the moment in a separate work and, at 478 

the time of this work, appears to be true for simple phenomena.  479 

  
Fig. 6 Comparison for case study no. 1(in psi) [Note: f denotes the compressive strength of 480 

concrete. The base ML mode: RF.] 481 

4.2 ASCE29: Standard Section 3.3 on the design of fire-resistive exposed wood members 482 

ASCE 29 is a standard for calculating the fire resistance of structural members and barrier 483 

assemblies made from structural steel, un/reinforced concrete, timber, and masonry and is 484 

developed as a joint effort between ASCE's Structural Engineering Institute and the Society of Fire 485 
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Protection Engineers (SFPE). This standard contains a number of empirical codal provisions that 486 

can be used to evaluate/predict the fire resistance of structural members.  487 

Sec. 3.3 in this standard provides guidance on calculating the fire resistance rating (or time to 488 

failure in minutes, t), measured in minutes, of timber beams with a least nominal dimension of 6 489 

in. (or 140 mm). For the severe case of beams exposed on four sides, t, is calculated as: 490 

𝑡 =  𝛾𝑧𝑏[4 − (𝑏/𝑑)]           (9) 491 

where, γ is a constant (2.54 min/in. or 0.1 min/mm), z is the load factor equals 1.3 for lightly loaded 492 

beams with a ratio < 50%, b and d are the actual breadth and depth of a beam. It is worth noting 493 

that the same empirical equation also appears in the Technical Report no. 10 by the National 494 

Design Specification (NDS) for wood construction (NDS 2018). As one can see, this empirical 495 

expression contains four parameters, two of which are considered constants and hence are treated 496 

as such, and hence only b and d are considered as features. This case study applied the proposed 497 

methodology by using LGBM as the base ML model.   498 

In this case study, only three similarity measures converged with default settings (i.e., Fréchet 499 

distance, the Bounding measure, and the normalized Euclidean distance). Special tuning was not 500 

applied to converge the other measure as the realized results were deemed acceptable (see Fig. 7). 501 

The MAEensemble was calculated at 0.859 min, and the same metric, when calculated for the same 502 

algorithm (without tuning), was at 1.111 min. R2 between the ensemble and the codal equation was 503 

unity. It is clear that the tuned ensemble outperforms all individual models in matching the codal 504 

equation’s PDPs and ALEs. In this case study, and as shown in the next study, matching PDPs is 505 

often seen to be faster (and affordable) than matching ALEs. This stems from the more complex 506 
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derivation nature of ALEs compared to PDPs. Given this observation, the proposed methodology 507 

was appended to allow the user/engineer to select if they seek to match PDP, ALE, or both. Such 508 

an amendment did not alter the analysis shown in the first case study.  509 

  

  

Fig. 7 Comparison for case study no. 2 (in min) [Note: b and d denote the breadth and depth of 510 

timber beams, respectively. The base ML mode: LGBM.] 511 

4.3 ACI318: Table 22.5.5.1 on shear strength for beams without minimum shear reinforcement 512 

ACI Code Table 22.5.5.1 lists the following equation for calculating the shear strength for beams 513 

without minimum shear reinforcement. This equation results from an iterative process led by the 514 

Joint ACI-ASCE Committee 445 and Subcommittee E of ACI Committee 318. 515 

𝑉𝑐 =  [8𝜆𝑠𝜆𝜌1/3√𝑓𝑐 + 𝑁𝑢/6𝐴𝑔]𝑏𝑑         (10) 516 

where ρw is the flexural reinforcement ratio for tension reinforcement in a section of As/bwd, Nu is 517 

the member-factored axial load, and Ag is the gross member area. The lightweight-aggregate 518 
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concrete factor, λ, was defined previously. The value of Vc shall not be taken as less than zero, nor 519 

as greater than λ5 (fc′)
0.5 bwd, and Nu/6Ag shall not be taken as greater than 0.05fc′. In this case 520 

study, beams with applied axial forces were not considered. In addition, λs (size effect term) and λ 521 

were taken as unity for simplicity.  522 

The LGBM was used in this case study as the base model. Figure 8 shows the behaviour of the 523 

tuned ensemble in terms of PDPs and ALEs after satisfying two similarity measures, namely the 524 

Fréchet distance and the Bounding measure. The MAEensemble was calculated at 3444.348 lbs and 525 

at 3620.0 lbs for the untuned model. The R2 for the ensemble was 99%. Clear matching between 526 

the ensemble and codal equation is evident.  527 

    

 
   

Fig. 8 Comparison for case study no. 3 (in lbs) [Note: The base ML mode: LGBM.] 528 

To further examine the performance of the tuned ensemble (as well as the proposed approach), an 529 

additional layer of validation is followed herein. In this process, 100 random beams were selected 530 

from ACI’s shear database (Reineck et al. 2003) for reinforced concrete members without shear 531 

reinforcement used in deriving the codal expression were examined against the codal expression 532 

and tuned ensemble. Figure 9 shows the results of this comparison and notes that the ensemble 533 
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achieves a better predictive capability than the codal expression in predicting the shear strength of 534 

the selected beams (MAEensemble = 4930.51 lbs, MAEcodalexpression = 5219.73, R2
ensemble = 84.1% and 535 

R2
codalexpression = 80.83%). It is worth noting that this additional external verification was not 536 

possible to conduct in the other case studies as the data used to create the codal provisions of 537 

interest were not available. 538 

 539 

Fig. 9 Comparison against 100 randomly selected beams from ACI’s shear database (in lbs) 540 

[Note: the database is accessible in (Reineck et al. 2003)] 541 

4.4 ASCE29: Standard Section 5.2.3 on concrete-filled hollow steel columns 542 

Another complex codal provision is tackled in this case study. The ASCE29 also presents guidance 543 

on evaluating the fire resistance rating of hollow steel columns filled with unreinforced normal 544 

weight concrete through the following provision. This equation was established empirically 545 

through a number of publications and has been verified by computer simulations at the National 546 

Research Council of Canada (NRC) (Kodur 1999; Kodur and MacKinnon 2000). It is worth noting 547 

that this expression is also listed under Sec. D-2.6.6. in the National Building Code of Canada and 548 

is also applicable to tubular shapes; however, only the case of circular tubes is presented herein. 549 
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𝑅 = 𝑎
(𝑓+20)

60(𝐿𝑒−1000)
𝐷2√𝐷/𝐶           (11) 550 

where, R is the fire resistance rating in hours, a is 0.07 for circular columns filled with siliceous 551 

aggregate concrete, and 0.08 for circular columns filled with carbonate aggregate concrete. f  is 552 

the specified 28-day compressive strength of concrete (MPa), Le is the column effective length 553 

(mm), D is the outside diameter for circular columns (mm), and C is the compressive force due to 554 

the unfactored dead load and live load in kips (kN).  555 

This codal provision is accompanied by additional stipulations that were enforced in this analysis, 556 

including, the required R rating shall be less than or equal to 2 hours, the specified f shall be equal 557 

to or greater than 20 MPa and shall not exceed 40 MPa. the column's effective length shall be at 558 

least 2000 mm and shall not exceed 4,000 mm, the outside diameter shall be at least 140 mm and 559 

shall not exceed 410 mm, and the compressive force shall not exceed the design strength of the 560 

concrete core determined in accordance with AISC LRFD-94, “Load and resistance factor design 561 

specification for structural steel buildings.” 562 

The RF algorithm was used as the base model. The convergence of the ensemble on the PDPs and 563 

ALEs was difficult to obtain, and hence the presented results in Fig. 10 are shown for a converged 564 

run wherein only the PDPs were matched using all aforementioned similarity measures were 565 

satisfied. Despite only matching the PDPs, the ALEs seem to also attain some degree of matching 566 

resemblance to that from the equation. The MAEensemble was calculated at 0.281 hours and at 0.471 567 

hours for the untuned model – an improvement of about 40%.  568 
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Fig. 10 Comparison for case study no. 4 (in hours) [Note: The base ML mode: LGBM.] 569 

4.5 AS3600 Fire resistance of concrete columns 570 

This case study tackles a more complex codal provision with six variables. A former edition of the 571 

Australian concrete code (AS3600) homed the following statistical-based codal equation to 572 

evaluate the fire resistance of concrete columns (Wade et al. 1997). This equation was fitted using 573 

the results of standard fire tests and numerical simulations. 574 

𝑅 =
𝑘 × 𝑓1.3×𝐵3.3𝐷1.8

105×𝑁1.5× 𝐿0.9            (12) 575 

where, R is the fire resistance (min), k is the constant dependent on cover and steel reinforcement 576 

ratio (equals to 1.47 and 1.48 for a cover less than 35 mm and greater than or equal to 35 mm, 577 

respectively), fc is the 28-day compressive strength of concrete (MPa), B is the least dimension of 578 
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column (mm), D is the greatest dimension of column (mm), N is the axial load during fire (kN), 579 

and L is the effective length (mm). 580 

This case study utilizes the RF algorithm as a base model. In addition, R2 and the bounding measure 581 

were satisfied in this case study. The MAEensemble (with default settings) was calculated at 56.957 582 

min, and the same metric, when calculated for the same algorithm (without tuning), was at 68.03 583 

min (R2 between the ensemble and the codal equation was 89%, and it is quite possible to improve 584 

the performance of the tuned ensemble by tuning the default settings). The tuned ensemble seems 585 

to match a good degree of similarity in terms of trends between PDPs and ALEs with the former 586 

codal provision (see Fig. 11). In some features (namely, k, f, and L), a gap is noticed to occur 587 

between the PDPs and ALEs obtained from all ML Models and the equation. This gap seems to 588 

have a shifting effect, wherein the models capture the trends of the PDPs/ALEs but not the values 589 

in some of the involved features.  590 

    

    

https://doi.org/10.1061/JSENDH.STENG-12934
https://doi.org/10.1061/JSENDH.STENG-12934


This is a preprint draft. The published article can be found at: https://doi.org/10.1061/JSENDH.STENG-12934.  

 

Please cite this paper as:  

Naser M.Z., (2024). Integrating Machine Learning Models to Building Codes and Standards: Establishing Equivalence 

through Engineering Intuition and Causal Logic. ASCE Journal of Structural 

Engineering. https://doi.org/10.1061/JSENDH.STENG-12934.         
 

33 

 

    

Fig. 11 Comparison for case study no. 3 (in min) [Note: b and d denote the breadth and depth of 591 

timber beams, respectively. The base ML mode: LGBM.] 592 

4.6 Additional case studies based on provisions stemming from a theoretical derivation  593 

These two case studies explore the applicability of the proposed approach to codal provisions that 594 

are not empirical in nature but rather derived from first principles. 595 

AISC: Manual Section F6.1. for I-shaped members and channels bent about their minor axis  596 

Section F6.1 in the AISC manual presents the following simple equation to evaluate the nominal 597 

flexural strength, Mn, in yielding.  598 

𝑀 = 𝑓𝑦 × 𝑍 ≤ 1.6 𝑓𝑦𝑆𝑦         (13) 599 

where, Sy is the elastic section modulus taken about the y-axis.  600 

This simple codal provision has two main features, and the data used in this case study were 601 

selected to satisfy the noted condition. XGBoost was selected to be the base ML model with two 602 

similarity measures (i.e., Fréchet distance and the Bounding measure). The outcome of this 603 

analysis is shown in Fig. 12. Both similarity metrics were satisfied, and the MAEensemble was 604 

calculated at 1637.95 kip.in, and the same metric, when calculated for the same algorithm (without 605 

tuning), was at 1659.74 kip.in. Looking at Fig. 12 clearly shows that the tuned ensemble matches 606 

the PDP and ALE of the codal equation and outperforms those obtained from the other models. 607 
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Despite being a simple case study and the need for additional tests to come in future work, this 608 

finding seems to indicate the suitability and applicability of the proposed approach to the ability 609 

of ML to mimic principle-based codal provisions.  610 

  

  
Fig. 12 Comparison for case study no. 6 (in kip.in) [Note: The base ML mode: XGBoost.] 611 

Various building codes: On the elastic deformation of beams 612 

Here, another theoretically derived expression is used as a case study. The equation for elastic 613 

deformation in simply supported beams loaded with a point load placed at the midspan is shown 614 

below and can be found in a variety of building codes/standards (such as Table 3-23 in the AISC 615 

manual):  616 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 =
𝑃𝐿

48𝐸𝐼
        (14) 617 
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where, P is the applied load (N), L is the span of the beam (mm), E is the modulus of elasticity 618 

(Pa), and I is the moment of inertia (mm4).  619 

For this case study, the XGBoost model was selected as the base model. All five similarity 620 

measures were used, but only one measure (R2) was satisfied (given default settings). Figure 13 621 

paints a comparison between the generated PDPs and ALEs from the model and the above 622 

equation. Despite satisfying one similarity measure, the achieved performance can be deemed 623 

acceptable. For completion, the MAEensemble was calculated at 2.461 mm, and the same metric was 624 

2.391 mm when calculated for the same algorithm (without tuning). R2 between the ensemble and 625 

the equation was 96%. 626 

  
  

    
Fig. 13 Comparison for case study no. 7 (in mm) [Note: The base ML mode: XGBoost] 627 

5.0 Additional thoughts, limitations, and future directions  628 

This section documents some of the main limitations of the proposed methodology and shares 629 

insights into future research directions.  630 
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5.1. A note on other matching methods  631 

An engineer might entertain the idea of achieving equivalence through matching feature 632 

importance (e.g., a measure of how valuable a feature is in the construction of the model) between 633 

the codal provision and the ML model. For example, if a given model’s error increase after 634 

systematically permuting a feature, then the so-called feature is indeed important since permuting 635 

has adversely affected the model’s predictions (Altmann et al. 2010).  636 

While this concept could be possible to integrate into the proposed methodology and was indeed 637 

successful in the first two studies (yet, these results were not shown in the body of this work), one 638 

must keep in mind that feature importance measures the total effect of shuffling a feature on 639 

prediction accuracy. While this is a common approach in ML, the perception of feature importance 640 

in an equation is somewhat of a nuanced concept simply because all features in a given equation 641 

are necessary to hold true (Naser 2023a). Therefore, one could argue that all features in an equation 642 

are equally important. 643 

The reader is to note that other explainability measures (i.e., SHAP (SHapley Additive 644 

exPlanations (Lundberg and Lee 2017)), LIME (Local Interpretable Model-agnostic Explanations 645 

(Ribeiro et al. 2016)), prototypes, etc.) could be explored to build upon the current analysis. The 646 

author believes that, despite their computational complexity, such measures could be proven 647 

successful and hence can be streamlined and added to the proposed methodology. The author 648 

would like to point out that there is room to investigate the influence of model type (i.e., tree-649 

based, ANN, etc.) vs. the degree of explainability. It is possible that some models might fit a 650 
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phenomenon more easily/accurately/with higher explainability than other models, as such, there is 651 

a possibility of a trade-off between accuracy & explainability. 652 

5.2. Limitations of the proposed methodology and future directions 653 

It is important to note that the presented approach can be viewed as complex and somewhat 654 

lengthy. As such, this approach may struggle to guarantee the convergence of a ML model that 655 

both fits the data well and matches the physical equation's behavior. In reality, the proposed 656 

approach converged within 2 minutes of analysis for all the case studies mentioned in this work 657 

using a typical desktop that can be found at a common engineering design office. However, in 658 

lengthy simulations or multi-phased codal provisions, it is possible that the proposed approach 659 

might suffer from instability due to chasing a target that continues to slightly but constantly 660 

changes based on the model's own performance.  661 

Fortunately, there are potential solutions to the above problems. One potential approach to attempt 662 

to optimize model parameters via gradient-based methods by computing the gradients of the 663 

PDPs/ALEs concerning the model parameters. Alternatively, an engineer might consider 664 

employing evolutionary or population-based optimization algorithms to search the parameter 665 

space for a set that minimizes the discrepancy between the PDPs/ALEs. If neural networks are 666 

used, then pre-specified layers can be trained to satisfy similarity metrics separately. Once a layer 667 

passes the similarity check, it can then be frozen to maintain it before moving into another measure. 668 

This approach could be an alternative to the ensemble approach used herein. It would be interesting 669 

to see what other possible solutions (and limitations) this research area might realize in the future. 670 
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6.0 Conclusions 671 

Building codes provide definitive standards to guide civil engineering practices and ensure safety. 672 

While ML has shown the potential to enhance predictive abilities, its integration into building 673 

codes is complicated due to transparency and regulatory approval issues. As civil engineering 674 

moves towards a more data-centric future, blending traditional engineering wisdom with 675 

innovative ML approaches could unlock new frontiers in designing and constructing safer, more 676 

efficient buildings. This work proposes an approach to modernizing building codes via ML. In this 677 

approach, empirical and regression-based codal equations can be used to create equivalent ML 678 

models that retain the logic and properties of such equations. This approach has been shown to be 679 

successful in structural and fire engineering phenomena homed in notable codal provisions.  680 
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