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Abstract 9 

The field of machine learning (ML) has witnessed significant advancements in recent years. 10 

However, many existing algorithms lack interpretability and struggle with high-dimensional and 11 

imbalanced data. This paper proposes SPINEX, a novel similarity-based interpretable neighbor 12 

exploration algorithm designed to address these limitations. This algorithm combines ensemble 13 

learning and feature interaction analysis to achieve accurate predictions and meaningful insights 14 

by quantifying each feature's contribution to predictions and identifying interactions between 15 

features, thereby enhancing the interpretability of the algorithm. To evaluate the performance of 16 

SPINEX, extensive experiments on 59 synthetic and real datasets were conducted for both 17 

regression and classification tasks. The results demonstrate that SPINEX achieves comparative 18 

performance and, in some scenarios, may outperform commonly adopted ML algorithms. The 19 

same findings demonstrate the effectiveness and competitiveness of SPINEX, making it a promising 20 

approach for various real-world applications. 21 

Keywords: Algorithm; Machine learning; Interpretability; Supervised learning. 22 

1.0 Introduction 23 

The rapid growth of machine learning (ML) techniques has revolutionized various domains, 24 

enabling accurate predictions and decision-making [1,2]. However, challenges persist, such as the 25 

lack of interpretability in complex models [3]. This has led to a growing interest in interpretable 26 

ML algorithms [4]. While existing approaches, such as decision trees and linear models, offer 27 

interpretability, they often sacrifice predictive performance. Conversely, complex models like 28 

neural networks and ensemble methods achieve high accuracy but lack interpretability [5]. 29 

In the vast landscape of algorithmic design, similarity-based algorithms are potent methods for 30 

tackling various prediction problems [6,7]. These algorithms rely on the premise that similar 31 

objects share similar properties and hence draw their strength from leveraging instance similarities 32 

and proximity to make predictions or categorizations/clustering. This approach is particularly 33 

useful in recommendation systems, classification tasks, and regression problems, where the goal 34 

is to predict an outcome based on the similarity of the input data to previously seen examples. 35 

The core idea behind such models is to find the 'neighbors' of a given data point in the feature 36 

space. Once these neighbors are identified, they are used to predict the given data point. This can 37 

be realized by taking a weighted average of the neighbors' outcomes, where the weights are 38 
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determined by the similarity of each neighbor to the given data point. This underlying principle is 39 

harnessed in various contexts, such as document retrieval [8], image recognition [9], etc. 40 

One of the key advantages of these models is their explainability. Unlike many other ML models, 41 

similarity-based models can provide clear explanations for their predictions based on specific, 42 

identifiable neighbors rather than abstract mathematical functions. However, the concept of 43 

'similarity' is not always straightforward. Different similarity measures may be appropriate for 44 

different data types, and choosing the right measure (i.e., including the number of neighbors) can 45 

significantly impact the model's performance [10].  46 

In addition to these challenges, these models also face the 'curse of dimensionality'. This refers to 47 

the fact that as the number of features (dimensions) in the data increases, similarity can become 48 

less meaningful. This is because, in high-dimensional spaces, all data points tend to be 'far away' 49 

from each other, making it difficult to find meaningful neighbors. Despite these challenges, recent 50 

research has shown that these models can achieve superior performance on a variety of tasks. For 51 

example, these models have been successfully applied to recommendation systems and 52 

classification tasks, where they have been shown to outperform traditional collaborative filtering 53 

approaches [11,12]. Notable reviews on this front can be found elsewhere [13–15].  54 

As mentioned above, one way to implement the similarity-based approach is to use a nearest-55 

neighbor algorithm. The nearest neighbor algorithm finds the k most similar objects to a given 56 

object and then predicts the label of the given object based on the labels of the k nearest neighbors. 57 

Such algorithms rely on the idea that the characteristics of an object can be inferred from those of 58 

its close neighbors [16]. In a kNN algorithm, the class of a new object is determined by the classes 59 

of its k nearest neighbors in the training set. The "closeness" of objects is typically defined in terms 60 

of some distance measure, such as Euclidean distance for numeric data or Hamming distance for 61 

categorical data [17]. The strength of such methods is their simplicity and intuitiveness since their 62 

predictions are directly tied to the observed data [18,19].  63 

On a different front, ML based on similarity computation approaches was reported to achieve 64 

promising experimental results in Natural Language Processing (NLP). Mikolov et al. [32] 65 

introduced two models that were designed to calculate continuous vector representations of words 66 

from extensive datasets via similarity tasks and showed superior accuracy to various neural 67 

networks. Also, the new similarity-based models were reported to outperform former models in 68 

terms of computational cost as they require less than a day to learn high quality word vectors from 69 

a more than 1.5 billion words dataset, demonstrating high merit in utilizing semantic word 70 

similarities. 71 

1.1 Related works 72 

Central to similarity-based algorithms’ functionality is the concept of identifying the nearest 73 

neighbors to a given data point of interest; these neighbors collectively contribute to the prediction 74 

[20]. This central characteristic is particularly advantageous in scenarios where the underlying data 75 
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distribution is unknown or complex and allows direct application in pattern recognition [21], 76 

recommendation systems [22], and medical diagnosis [23,24].  77 

Over the years, various studies have explored the effectiveness of similarity-based algorithms. One 78 

significant area of research has been related to weighted nearest neighbors, where different 79 

neighbors are assigned different weights based on their distance from the target point [25]. This 80 

approach mitigates some of the limitations of the basic-like algorithms, which treat all neighbors 81 

equally (regardless of their proximity to the target point). Another aspect has been the exploration 82 

of efficient algorithms for large datasets. This stems from the fact that the brute-force approach of 83 

comparing a target point with every other point in a large dataset can be computationally 84 

impractical [26]. This challenge has led to the development of various indexing structures and 85 

algorithms [27]. 86 

The integration of similarity-based algorithms with other ML techniques, such as deep learning, 87 

presents an exciting theme for exploration [28,29]. For example, recent works have adopted 88 

similarity-based algorithms with clustering [30] and anomaly detection [31]. Dudek and Pelka [7] 89 

explored the application of pattern similarity-based models. They noted that experimental results 90 

collected across 35 European countries showed that such models outperformed the classical 91 

statistical and ML models in terms of accuracy, simplicity, and ease of optimization.  92 

1.2 Key contributions of this work 93 

From the lens of this paper, we propose a novel ML algorithm, SPINEX (Similarity-based 94 

Predictions with Explainable Neighbors Exploration), which combines similarity-based predictions 95 

and neighbors’ exploration. SPINEX offers interpretability through feature contribution analysis and 96 

interaction effects. A number of extensive experiments were carried out to validate the 97 

effectiveness and competitiveness of SPINEX in both regression and classification tasks. More 98 

specifically, to evaluate the performance of SPINEX, 59 experiments were conducted on diverse 99 

synthetic and real datasets covering a wide range of domains. The experimental results 100 

demonstrate the effectiveness and competitiveness of SPINEX compared to state-of-the-art 101 

algorithms. Therefore, this paper contributes to the field by proposing a novel ML algorithm that 102 

combines the strengths of similarity-based predictions and neighbors’ exploration, offers 103 

interpretability, and demonstrates its effectiveness and competitiveness in regression and 104 

classification tasks. 105 

The rest of the paper is organized as follows: Section 2 presents the methodology of SPINEX, 106 

explaining each component in detail. Section 3 discusses the experimental setup and presents the 107 

results of the experiments conducted. Finally, Section 4 concludes the paper, highlighting the 108 

contributions of SPINEX and suggesting potential future directions for research.  109 

2.0 Description of SPINEX  110 

The SPINEX algorithm comprises several components that provide interpretable regression and 111 

classification analysis. First, it begins with a data preprocessing step, then calculates pairwise 112 

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.  

 

Please cite this paper as:  

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors 

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518. 

         

4 

 

distances between instances using a user-defined metric. Based on these distances, weights are 113 

assigned to the instances using a Gaussian kernel function. This step allows SPINEX to emphasize 114 

the influence of the most relevant neighbors during prediction. SPINEX also accommodates single 115 

and ensemble models to capture the inherent complexity of the data. This algorithm builds on the 116 

concept of neighbor-based feature importance, which measures the contribution of each feature to 117 

the prediction by considering the influence of its neighboring instances [33]. This approach 118 

provides a more nuanced understanding of feature importance, accounting for individual feature 119 

effects and their dependencies on nearby instances.  120 

SPINEX also incorporates feature interaction analysis, which explores the interactions between 121 

different feature combinations to identify synergistic or antagonistic effects on the target variable. 122 

Further, SPINEX enables the generation of local explanations to gain insights into individual 123 

predictions. By considering the neighbors of a specific instance, the algorithm quantifies the 124 

importance of each feature and its interaction effects within the local context.  125 

To facilitate the interpretation and analysis of SPINEX -based models, the proposed algorithm 126 

provides various visualization techniques, including feature importance plots, which show the 127 

relative contribution of each feature to the prediction, and interaction effect heatmaps, which 128 

visualize the interaction effects between different feature combinations. The algorithm also offers 129 

tools to analyze the change in predictions with the addition of neighbors, enabling the exploration 130 

of the model's behavior in response to nearby instances. Table 1 qualitatively compares SPINEX to 131 

other commonly used ML algorithms, which were also utilized in this work's experiments in a later 132 

section.  133 

The following discussion further articulates the working mechanisms (i.e., functions and methods) 134 

of SPINEX for two versions of this algorithm: SPINEXRegressor and SPINEXClassifier.  135 

Data Preprocessing: The SPINEX algorithm applies several preprocessing steps using the 136 

DataPreprocessor class. Given data matrix X ∈ ℝⁿˣᵈ and corresponding label vector y ∈ ℝⁿ, 137 

preprocess the data to handle missing values, outliers, and perform feature selection. This includes 138 

handling missing data (removing or imputing), outlier detection and removal, and feature selection. 139 

The feature selection process uses a local search strategy, and the user can specify prioritized 140 

features for inclusion.  141 

Distance Calculation: Distances between instances are calculated in the feature space. For a given 142 

distance metric d, calculate the distance Dᵢⱼ between every pair of instances (xᵢ, xⱼ) as Dᵢⱼ = d(xᵢ, xⱼ). 143 

These distances are computed using the specified distance metric (Manhattan distance by default) 144 

and are then stored in a distance matrix. The user can specify the distance metric according to the 145 

problem at hand. 146 

Weight Calculation: Weights are assigned to each of the training instances based on their distances 147 

to the test instance. The weights are computed using the Gaussian kernel function, where instances 148 
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closer to the test instance will have higher weights such that wᵢ for each instance xᵢ based on their 149 

distances to the test instance xₜ as follows: wᵢ = exp( - (Dᵢₜ² / (2σ²) ) ), where σ is the standard 150 

deviation of the distances. The standard deviation for the Gaussian kernel is computed as the mean 151 

of the distances. 152 

Prediction: Predictions are made by considering the n nearest neighbors to a given test instance. 153 

The label ŷₜ for a test instance xₜ as ŷₜ = argmax_y ∑ wᵢ * I(yᵢ = y), where I is the indicator function 154 

that is 1 if yᵢ equals y and 0 otherwise, and the sum is over the n nearest neighbors of the test 155 

instance. The number of neighbors, n, is a user-defined parameter. The algorithm identifies these 156 

nearest neighbors based on the distance matrix. Once the neighbors are identified, they are 157 

combined based on the assigned weights to make a prediction.  158 
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Table 1 Qualitative comparison between SPINEX and commonly used ML algorithms  159 
 160 

Algorithm 
Feature 

Importance 

Interaction 
Effects 

Interpretability 
Model 

Complexity 

Ensemble 
Learning 

Handling 
Categorical 

Features 

Handling 
Imbalanced 

Data 

Speed Inference Model Size 
Parallel 

Computing 

SPINEX Yes Yes Medium Medium Yes No No Medium Fast Medium Yes 

Logistic 
Regression 

Yes No High Low No No No High Fast Small Yes 

Decision 
Tree 

Yes No High Varies No Yes No High Fast Varies Yes 

Random 
Forest 

Yes No Medium High Yes Yes Yes Medium Fast Large Yes 

Gradient 
Boosting 

Yes No Medium High Yes Yes Yes Low Fast Large Yes 

AdaBoost Yes No Medium High Yes Yes Yes Medium Fast Large Yes 

CatBoost Yes No Medium High Yes Yes Yes Medium Fast Large Yes 

XGBoost Yes No Medium High Yes Yes Yes High Fast Large Yes 

LightGBM Yes No Medium High Yes Yes Yes High Fast Large Yes 

Support 
Vector 

Classifier 
No No Low High No Yes Yes Low Slow Large Yes 

K-Nearest 
Neighbors 

No No High Low No No No Low Slow Small Yes 

 161 

▪ Feature Importance: Indicates whether the algorithm can provide feature importance or contribution scores.  162 

▪ Interaction Effects: Indicates whether the algorithm can capture and quantify interaction effects between features.  163 

▪ Interpretability: Assesses the ease of understanding and explaining the model's behavior and predictions.  164 

▪ Model Complexity: Indicates the complexity of the model. It assesses the level of complexity in terms of the number of parameters or rules used by the algorithm.  165 

▪ Ensemble Learning: Indicates whether the algorithm supports ensemble learning. Ensemble learning combines multiple models to improve performance.  166 

▪ Handling Categorical Features: Indicates whether the algorithm has built-in mechanisms to handle categorical features.  167 

▪ Handling Imbalanced Data: Indicates whether the algorithm has techniques to handle imbalanced datasets, where the number of instances in different classes is 168 

unequal.  169 

▪ Speed: Represents the speed of the algorithm for training and prediction tasks. It assesses the algorithm's efficiency in terms of computational time.  170 

▪ Inference: Indicates whether the algorithm supports efficient inference or prediction on new, unseen data after training.  171 

▪ Model Size: Assesses the memory footprint or storage requirements of the model.  172 

▪ Parallel Computing: Indicates whether the algorithm can leverage parallel computing capabilities to speed up training or prediction tasks.  173 
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Feature contribution refers to the individual impact or importance of each feature on the prediction 174 

made by SPINEX. The algorithm calculates feature contributions using a neighbor-based approach. 175 

Once the neighbors are determined, the algorithm analyzes the difference in predictions between 176 

the original instance and its neighbors. This difference reflects the contribution of each feature to 177 

the prediction. Specifically, the algorithm compares the prediction made by the model when a 178 

particular feature is present in the instance with the prediction when that feature is absent. 179 

Mathematically, the contribution Cₖ of a feature fₖ for an instance xᵢ as Cₖ = P(y|xᵢ) - P(y|xᵢ^-fₖ), 180 

where P(y|xᵢ) is the prediction probability for the instance xᵢ and P(y|xᵢ^-fₖ) is the prediction 181 

probability for the instance xᵢ with the k-th feature excluded. Calculate the interaction effect Iₖₗ 182 

between two features fₖ and fₗ as Iₖₗ = Cₖ + Cₗ - Cₖₗ, where Cₖₗ is the change in prediction probability 183 

when both features are excluded.  184 

The larger the difference, the more significant the contribution of the feature to the prediction. The 185 

feature contribution calculation takes into account the influence of neighboring instances, allowing 186 

the algorithm to capture the contextual importance of each feature. This approach provides a more 187 

nuanced understanding of feature importance, as it considers both the individual feature effects 188 

and their dependencies on nearby instances. 189 

o In regression and classification algorithms, feature contributions are calculated by 190 

predicting the output with and without a given feature, then taking the difference. This 191 

indicates how much the prediction changes when a feature is removed, i.e., the 192 

"contribution" of the feature. 193 

✓ In the regression algorithm, the method compute_contributions() is used to 194 

calculate feature contributions. It does this by predicting the output value with 195 

and without each feature and taking the difference. 196 

✓ In the classification algorithm, the method predict_contributions() is used to 197 

calculate feature contributions. It does this by predicting class probabilities with 198 

and without each feature and taking the difference. 199 

o Interaction effects refer to the combined impact of feature combinations on the 200 

prediction made by the SPINEX regression model. The algorithm analyzes the 201 

interactions between pairs or sets of features to identify synergistic or antagonistic 202 

effects that go beyond the individual contributions of the features. The algorithm 203 

examines the change in predictions when specific feature combinations are present or 204 

absent from calculating interaction effects. It compares the prediction made by the 205 

model with a particular feature combination to the prediction when that feature 206 

combination is removed. The difference in predictions reflects the interaction effect 207 

between the features in the combination. The algorithm considers all possible feature 208 

combinations, ranging from pairs to larger sets, to explore the full landscape of 209 

interactions. It quantifies the impact of each feature combination on the prediction, 210 

providing insights into the synergies or antagonisms between different features. 211 
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✓ In the regression algorithm, compute_combination_impact() is used to 212 

calculate interaction effects. It does this by predicting the output value with all 213 

features, with one feature removed and two removed, and then calculating the 214 

interaction effect as described above. 215 

✓ In the classification algorithm, the method predict_contributions() is used to 216 

calculate interaction effects. It does this by predicting class probabilities with 217 

all features, with one feature removed and two features removed, and then 218 

calculating the interaction effect described above. 219 

o Overall, the calculation of feature contributions and interaction effects is very similar 220 

in both the SPINEX classification and regression algorithms. The main difference is in 221 

the predicted output (class probabilities vs. output value) and the context in which these 222 

calculations are used (classification vs. regression). 223 

Feature Importance and Impact Analysis: Feature importance is calculated as the mean absolute 224 

contribution of a feature across all instances. For example, the importance Fₖ of a feature fₖ as Fₖ 225 

= (1/n) ∑ |Cₖ|. Calculate the impact IF of a combination of features F as IF = P(y|xᵢ) - P(y|xᵢ^-F), 226 

where P(y|xᵢ-F) is the prediction probability when all features in F are excluded. The impact of 227 

feature combinations is calculated by excluding a combination of features and computing the 228 

change in prediction probabilities. The results are sorted by impact, providing insight into which 229 

combinations of features are most important. 230 

▪ Model Ensembling: The SPINEX model can be used as a base classifier in ensemble models. 231 

The user can specify an ensemble method, and the SPINEX classifier is then combined with 232 

other classifiers (like DecisionTreeClassifier) to make a final prediction. Three ensemble 233 

methods are used in the script: Stacking (where the predictions of the base classifiers are 234 

used as input to a final classifier), Bagging (where multiple instances of the SPINEX 235 

classifier are trained on random subsets of the training data), and Boosting (where multiple 236 

instances of the SPINEX classifier are trained sequentially, with each one focusing on the 237 

instances that the previous classifiers misclassified). For base classifiers h₁, ..., hₚ, in the 238 

case of Stacking, calculate the final prediction h(x) as h(x) = g(h₁(x), ..., hₚ(x)), where g is the 239 

final classifier. In the case of Bagging, calculate h(x) as h(x) = majority(h₁(x), ..., hₚ(x)). In 240 

the case of Boosting, calculate h(x) as h(x) = weighted_majority(h₁(x), ..., hₚ(x)). 241 

2.3 SPINEX for regression   242 

Inputs: 243 

  X_train: Training feature matrix 244 

  y_train: Training target vector 245 

  X_test: Test feature matrix 246 

  distance_metric: Distance metric for calculating pairwise distances 247 

  num_neighbors: Number of nearest neighbors to consider 248 

  kernel_width: Width of the Gaussian kernel 249 

 250 
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Procedure SPINEX: 251 

  Preprocess(X_train, X_test) 252 

  distances = CalculateDistances(X_train, X_test) 253 

  weights = CalculateWeights(distances) 254 

  predictions = Predict(X_train, y_train, X_test, weights) 255 

  Return predictions 256 

 257 

Procedure Preprocess(X_train, X_test): 258 

  # Handle missing data and outliers in X_train and X_test 259 

 260 

Procedure CalculateDistances(X_train, X_test): 261 

  distances = empty matrix of size (number of test instances) x (number of training instances) 262 

  For each test_instance in X_test: 263 

    For each train_instance in X_train: 264 

      distances[test_instance][train_instance] = calculateDistance(test_instance, train_instance, distance_metric) 265 

  Return distances 266 

 267 

Procedure CalculateWeights(distances): 268 

  weights = empty matrix of size (number of test instances) x (number of training instances) 269 

  For each test_instance in distances: 270 

    sorted_distances = sort(distances[test_instance])  # Sort distances in ascending order 271 

    kernel_bandwidth = kernel_width * mean(sorted_distances)  # Compute kernel bandwidth 272 

    For i = 0 to num_neighbors - 1: 273 

      weights[test_instance][i] = calculateWeight(sorted_distances[i], kernel_bandwidth) 274 

  Return weights 275 

 276 

Procedure Predict(X_train, y_train, X_test, weights): 277 

  predictions = empty vector of size (number of test instances) 278 

  For each test_instance in X_test: 279 

    nearest_neighbors = GetNearestNeighbors(weights[test_instance], num_neighbors) 280 

    prediction = CalculatePrediction(nearest_neighbors, y_train) 281 

    predictions[test_instance] = prediction 282 

  Return predictions 283 

 284 

Procedure GetNearestNeighbors(weights, num_neighbors): 285 

  sorted_indices = indices of weights sorted in descending order 286 

  nearest_neighbors = first num_neighbors indices from sorted_indices 287 

  Return nearest_neighbors 288 

 289 

Procedure CalculatePrediction(nearest_neighbors, y_train): 290 

  prediction = average of y_train values corresponding to nearest_neighbors 291 

  Return prediction 292 

Explanation of main functions and methods: 293 

▪ Fitting and Predicting with SPINEXRegressor 294 
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- fit(X, y): This method trains the SPINEX regression model using training data X and target 295 

values y. 296 

- predict(X): This method predicts the target values for a given set of input samples X, using 297 

the trained SPINEX regression model. 298 

- predict_contributions(X): This method predicts the contributions of each feature to the 299 

target values for a given set of input samples X. 300 

▪ Analysis & Visualization of Feature Importance and Interaction Effects 301 

- get_feature_importance(X): This method calculates the feature importances for each 302 

feature in X. 303 

- get_global_interaction_effects(X): This method calculates the average interaction effects 304 

for each feature in the dataset. 305 

- feature_combination_impact_analysis(X): This method analyzes the impact of different 306 

combinations of features on the model's predictions. 307 

- normalize_importances(importances): A utility function for normalizing feature 308 

importances. 309 

- visualize_feature_importances(local_importances, global_importances, 310 

feature_names): This method generates a bar plot to compare local and global 311 

feature importances. 312 

- visualize_interaction_effects(interaction_effects_df): This method generates a bar plot to 313 

show the interaction effects between different features. 314 

- plot_average_interaction_network(avg_interaction_effects, feature_names=None): 315 

This function creates a network graph to visualize the interactions between different 316 

features. 317 

- plot_contribution_heatmaps(contributions, interaction_effects, feature_names=None): 318 

This function creates two heatmaps - one for individual feature contributions and 319 

one for pairwise interactions. 320 

▪ Local Explanations & Visualizations 321 

- get_local_explanation(X, instance_to_explain): This method calculates the local feature 322 

importances for a specific instance. 323 

- get_local_interaction_effects(X, instance_to_explain): This method calculates the local 324 

interaction effects for a specific instance. 325 

- plot_prediction_change(X, y, instance_to_explain): This function visualizes how the 326 

prediction changes as each neighbor is added. 327 

- visualize_neighbor_counts(neighbor_counts): This function visualizes the counts of each 328 

neighbor in a bar plot. 329 

▪ Influence of Feature Combinations & Local Changes 330 

- plot_feature_pair_influence(X, instance_to_explain, feature_pair, grid_size=20): This 331 

method generates a 3D plot to show how changing the values of a pair of features 332 

influences the prediction. 333 
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- plot_feature_triplet_influence(X, instance_to_explain, feature_triplet, feature_names, 334 

grid_size=20): This method generates a 3D scatter plot to show how changing the 335 

values of a triplet of features influences the prediction. 336 

- explore_local_changes(X, instance_to_explain, feature_to_explore, grid_size=100, 337 

feature_range=None): This method generates a series of predictions by varying the 338 

value of a specific feature and keeping all other features constant. 339 

- plot_local_changes(X, instance_to_explain, feature_to_explain, grid_size=100, 340 

feature_range=None, feature_name=None): This function visualizes how the 341 

prediction changes as the value of a specific feature changes. 342 

- explore_all_local_changes(X, instance_to_explain, grid_size=100, feature_range=None): 343 

This function generates a series of predictions by varying the values of all features 344 

one by one and keeping all other features constant. 345 

- explore_local_changes_for_pair(X, instance_to_explain, feature_pair, grid_size=100, 346 

feature_range=None): This method generates a series of predictions by varying the 347 

values of a pair of features and keeping all other features constant. 348 

- explore_local_changes_for_triplet(X, instance_to_explain, feature_triplet, grid_size=10, 349 

feature_range=None): This method generates a series of predictions by varying the 350 

values of a triplet of features and keeping all other features constant. 351 

The following are the hyperparameters for the regression version of SPINEX (many of which are 352 

similar to those for the classification version): 353 

▪ n_neighbors: This parameter controls the number of neighbors to use for neighbor queries. 354 

The choice of n_neighbors affects the predictions made by the model: a smaller number 355 

makes the model more sensitive to local variations in the data, while a larger number makes 356 

the predictions more stable at the expense of potentially ignoring smaller patterns. 357 

▪ distance_threshold: This parameter is used in the calculation of instance weights. Weights 358 

are calculated as the reciprocal of the sum of the distance to each neighbor and the decayed 359 

distance threshold. The distance_threshold parameter thus controls how much influence 360 

more distant neighbors have on the prediction of a given instance. 361 

▪ distance_threshold_decay: This parameter controls the decay rate of the distance 362 

threshold. A lower decay rate means that the influence of more distant neighbors decays 363 

more quickly. 364 

▪ ensemble_method: This parameter allows the user to specify an ensemble method to use 365 

in combination with SPINEX. Options include bagging, boosting, and stacking. Ensemble 366 

methods combine the predictions of multiple models to improve predictive performance. 367 
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▪ n_features_to_select: This parameter controls the number of features to select for training 368 

the model. If auto_select_features is set to True, the model will automatically select the 369 

features it deems most important. 370 

▪ auto_select_features: If this parameter is set to True, the model will automatically select 371 

a subset of features for training. The number of features to select is controlled by the 372 

n_features_to_select parameter. 373 

▪ use_local_search: If this parameter is set to True, the model will perform a local search to 374 

select the best features for training. This can potentially improve the model's performance 375 

but may also increase training time. 376 

▪ prioritized_features: This parameter allows the user to specify a list of features that should 377 

be prioritized in the feature selection process. 378 

▪ missing_data_method: This parameter allows the user to specify the method for handling 379 

missing data. Options include mean_imputation, which replaces missing values with the 380 

mean of the existing values, and deletion, which removes instances with missing values. 381 

▪ outlier_handling_method: This parameter allows the user to specify the method for 382 

handling outliers. Options include z_score_outlier_handling, which removes instances that 383 

have a Z-score greater than 3, and iqr_outlier_handling, which removes instances that fall 384 

outside a certain range defined by the interquartile range (IQR). 385 

▪ exclude_method: This parameter allows the user to specify a method for excluding certain 386 

instances from the training set. This could be used, for example, to exclude instances 387 

considered outliers based on some criterion. 388 

2.4 SPINEX for classification    389 

Inputs: 390 

  X_train: Training feature matrix 391 

  y_train: Training target vector (class labels) 392 

  X_test: Test feature matrix 393 

  distance_metric: Distance metric for calculating pairwise distances 394 

  num_neighbors: Number of nearest neighbors to consider 395 

  kernel_width: Width of the Gaussian kernel 396 

 397 

Procedure SPINEX: 398 

  Preprocess(X_train, X_test) 399 

  distances = CalculateDistances(X_train, X_test) 400 

  weights = CalculateWeights(distances) 401 

  predictions = Predict(X_train, y_train, X_test, weights) 402 

  Return predictions 403 

 404 

Procedure Preprocess(X_train, X_test): 405 
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  # Handle missing data and outliers in X_train and X_test 406 

 407 

Procedure CalculateDistances(X_train, X_test): 408 

  distances = empty matrix of size (number of test instances) x (number of training instances) 409 

  For each test_instance in X_test: 410 

    For each train_instance in X_train: 411 

      distances[test_instance][train_instance] = calculateDistance(test_instance, train_instance, distance_metric) 412 

  Return distances 413 

 414 

Procedure CalculateWeights(distances): 415 

  weights = empty matrix of size (number of test instances) x (number of training instances) 416 

  For each test_instance in distances: 417 

    sorted_distances = sort(distances[test_instance])  # Sort distances in ascending order 418 

    kernel_bandwidth = kernel_width * mean(sorted_distances)  # Compute kernel bandwidth 419 

    For i = 0 to num_neighbors - 1: 420 

      weights[test_instance][i] = calculateWeight(sorted_distances[i], kernel_bandwidth) 421 

  Return weights 422 

 423 

Procedure Predict(X_train, y_train, X_test, weights): 424 

  predictions = empty vector of size (number of test instances) 425 

  For each test_instance in X_test: 426 

    nearest_neighbors = FindNearestNeighbors(weights[test_instance], num_neighbors) 427 

    prediction = CalculatePrediction(nearest_neighbors, y_train) 428 

    predictions[test_instance] = prediction 429 

  Return predictions 430 

 431 

Procedure FindNearestNeighbors(weights, num_neighbors): 432 

  sorted_indices = indices of weights sorted in descending order 433 

  nearest_neighbors = first num_neighbors indices from sorted_indices 434 

  Return nearest_neighbors 435 

 436 

Procedure CalculatePrediction(nearest_neighbors, y_train): 437 

  class_counts = empty dictionary 438 

  For each neighbor in nearest_neighbors: 439 

    class_label = y_train[neighbor] 440 

    If class_label is not in class_counts: 441 

      class_counts[class_label] = 1 442 

    Else: 443 

      class_counts[class_label] += 1 444 

  prediction = class label with the highest count in class_counts 445 

  Return prediction 446 

Explanation of main functions and methods: 447 

▪ Fitting and Predicting with SPINEXClassifier 448 

- fit(X, y): This method trains the SPINEX classification model using training data X and 449 

target values y. 450 
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- predict(X): This method predicts the target values for a given set of input samples X, using 451 

the trained SPINEX classification model. 452 

▪ Assessing Model Accuracy 453 

- score(X, y): This method calculates the mean accuracy on the given test data and labels. 454 

▪ Analysis & Visualization of Feature Importance and Interaction Effects 455 

-  get_feature_contributions(X): This method calculates the contributions of each feature 456 

for a given instance. 457 

- plot_feature_contributions(feature_contributions): This method generates a bar plot to 458 

visualize the contributions of each feature. 459 

- get_feature_interactions(X): This method calculates the interactions between every pair 460 

of features for a given instance. 461 

- plot_feature_interactions(feature_interactions): This method generates a heatmap to 462 

visualize the interaction effects between different features. 463 

- plot_prediction_change(X, y): This function visualizes how the prediction changes as 464 

each neighbor is added. 465 

▪ Local Explanations & Visualizations 466 

- get_local_explanation(X, instance_to_explain): This method calculates the local feature 467 

importances and neighbor counts for a specific instance. 468 

- get_local_interaction_effects(X, instance_to_explain): This method calculates the local 469 

interaction effects for a specific instance. 470 

- visualize_neighbor_counts(neighbor_counts): This function visualizes the counts of each 471 

neighbor in a bar plot. 472 

▪ Influence of Feature Combinations & Local Changes 473 

- plot_all_feature_contributions(model, X): This function generates a scatter plot to 474 

visualize the contributions of all features. 475 

- get_global_interaction_effects(X, y) and feature_combination_impact_analysis(X, y): 476 

These functions calculate the average interaction effects and the impact of feature 477 

combinations for all instances in the dataset. 478 

- get_feature_importance(X, instance_to_explain): This method obtains the feature 479 

importances and interaction effects for selected instances. 480 

- plot_feature_pair_influence(X, instance_to_explain, feature_pair): This method 481 

generates a scatter plot to show how changing the values of a pair of features 482 

influences the prediction. 483 

- plot_feature_triplet_influence(X, instance_to_explain, feature_triplet): This method 484 

generates a scatter plot to show how changing the values of a triplet of features 485 

influences the prediction. 486 

3.0 Description of benchmarking experiments, algorithms, and datasets  487 

This section describes the experimental examination used to benchmark SPINEX. For a start, SPINEX 488 

was examined against ten other commonly used ML algorithms, namely, Logistic Regression, 489 

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518


This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.  

 

Please cite this paper as:  

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors 

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518. 

         

15 

 

Decision Tree, Random Forest, Gradient Boosting, AdaBoost, CatBoost, XGBoost, LightGBM, 490 

Support Vector Classifier, and K-Nearest Neighbors. All of these models were used in their default 491 

settings1.  492 

A series of synthetic and real regression and classification datasets were used. Many of these 493 

datasets were also recently benchmarked via several ML algorithms [34,35]. Each dataset is 494 

checked per the recommendations of recent researchers aimed at measuring data health. Three 495 

criteria were selected, and all of these criteria were satisfied,  496 

• Van Smeden et al. [36] require a minimum set of 10 observations per feature. 497 

• Riley et al. [37] suggest a minimum of 23 cases per feature. 498 

• Frank and Todeschini [38] recommend maintaining a minimum ratio of 3 and 5 between 499 

the number of observations and features. 500 

A 5-fold cross-validation technique is applied in regression experiments, and in classification 501 

experiments, a stratified 10-fold cross-validation technique is applied [39–41]. The performance 502 

of the ML models created is evaluated via a number of regression and classification metrics, as 503 

listed in Table 2 [42]. For regression problems, the metrics included the mean absolute error 504 

(MAE) and coefficient of determination (R2). In general, lower values of MAE and values close 505 

to positive unity for R2 are favorable. In addition, the classification metrics include accuracy, 506 

logloss error, and the area under the receiver operating characteristic (ROC) curve (AUC). 507 

Naturally, higher values of accuracy and AUC and lower values of the logloss metrics are 508 

favorable. Finally, a newly-derived functional metrics is also used estimated energy.  509 

Table 2 List of common performance metrics.  510 

Metric Formula 

Regression 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =  
∑ |𝑃𝑖 − 𝐴𝑖|

𝑛
𝑖=1

𝑛
 

Coefficient of Determination (R2) 
𝑅2 = 1 − ∑(𝑃𝑖 − 𝐴𝑖)

2

𝑛

𝑖=1

/ ∑(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

 

A: actual measurements, P: predictions, n: number of data points. 

Classification 

Accuracy  
𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

P: predictions, N: number of real negatives, TP: number of true positives, 
TN: number of true negatives. 

 
1 The default setting for SPINEX include: 

▪ SPINEXRegressor = SPINEX(n_neighbors=5, distance_threshold=0.05, distance_threshold_decay=0.05, 
ensemble_method=None, n_features_to_select=None, auto_select_features=False, use_local_search=False, 
prioritized_features=None, missing_data_method='mean_imputation', outlier_handling_method='z_score_outlier_handling', 
exclude_method='zero') 

▪ SPINEXClassifier = SPINEX(n_neighbors=5, distance_threshold=0.05, distance_threshold_decay=0.95, 
ensemble_method=None, metric='euclidean') 
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Logloss error 
𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃

𝑀

𝑐=1

 

M:  number of classes, c: class label, y: binary indicator (0 or 1) if c is the 
correct classification for a given observation. 

Area under the ROC curve 
𝐴𝑈𝐶= ∑

1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)

𝑁−1

𝑖=1

(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖) 

FP: number of false positives, FN: number of false negatives. 

Functional metric (from [34]) 

Estimated Energy  

𝑀𝑆 × (𝑇𝑇 + 𝑃𝑇) 
MS: model size, TT: training time, and PT: prediction time. Smaller values 
are favorable with a hypothetical minimum value = 1.0 MB × 10 sec = 10 

MB.sec. 

3.1 Synthetic datasets 511 

A collection of functions that generate synthetic data sets, each simulating different types of 512 

relationships between features and the target, were used in our experiments. These datasets are 513 

useful for testing and evaluating ML models' performance (see Table 3).  514 

3.1.1 Regression experiments 515 

The make_regression function from the sklearn.datasets module was used herein. More 516 

specifically, four primary functions are used. These include:  517 

▪ generate_regression_data function generates random regression data. The underlying 518 

equation for this function can be represented as: 519 

y = X₁w₁ + X₂w₂ + ... + Xₙwₙ + b + ε 520 

Here, 'X' represents the input features, w signifies the weights, b is the bias, and ε is a random 521 

noise term. 522 

▪ generate_synthetic_data function generates a dataset where the relationship between the 523 

features and the target is a combination of a quadratic function, a sinusoidal function, and a 524 

simple multiplication. This is a somewhat complex relationship, which would provide a 525 

challenge to many types of machine learning models. The equation for this function is: 526 

y = X₀ + X₁¹ + X₂² + ... + Xₙⁿ + ε + outlier_noise 527 

In this equation, ε represents random noise, while outlier_noise is additional noise added to 528 

randomly chosen samples. 529 

▪ generate_cubic_data function creates a dataset where the relationship between the features 530 

and the target is a combination of a cubic function, a squared function, and a simple 531 

multiplication. This type of dataset is useful for testing how well a model can handle cubic 532 

relationships. Here, the equation is: 533 

y = X₀ + X₁³ + X₂⁴ + ... + Xₙⁿ⁺² + ε + outlier_noise 534 
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▪ generate_exponential_data function creates a dataset with an exponential relationship 535 

between one of the features and the target, a decaying exponential for another feature, and 536 

simple linear relationships for the remaining features. The equation for this function is: 537 

y = exp(X₀) + X₁¹ + X₂² + ... + Xₙⁿ + ε + outlier_noise 538 

▪ generate_step_data function creates synthetic data where the relationship between the first 539 

feature and the output is a step function, and subsequent features contribute polynomially to 540 

the output. Gaussian noise is added to the output. The underlying equation can be represented 541 

as: 542 

y = u(X₀ - 0.5) + X₁¹ + X₂² + ... + Xₙⁿ + ε 543 

In this equation, u is the unit step function. 544 

▪ generate_complex_interaction_data function generates synthetic data with complex 545 

interactions between the features, including polynomial, sinusoidal, and logarithmic 546 

interactions. Here, the equation is: 547 

y = X₀² + sin(X₁) × log(X₂² + 1) + ε 548 

▪ generate_polynomial_data function creates synthetic data where the relationship between the 549 

features and the output is defined by high degree polynomials. The underlying equation can be 550 

represented as: 551 

y = X₀³ + X₁⁴ - X₂⁵ + ε 552 

▪ generate_exp_log_data function generates an interaction between an exponential function of 553 

the first feature and the natural logarithm of one plus the second feature. The equation for this 554 

function is: 555 

y = exp(X₀) × log₁p(X₁) + ε 556 

▪ generate_sin_exp_data function creates synthetic data where the output is an interaction 557 

between a sinusoidal function of the first feature and an exponential function of the second 558 

feature. Here, the equation is: 559 

y = sin(πX₀) × exp(X₁) + ε 560 

▪ generate_tan_data function generates a tangent of the first feature, with subsequent features 561 

contributing polynomially to the output. The underlying equation can be represented as: 562 

y = tan(X₀) + X₁¹ + X₂² + ... + Xₙⁿ + ε 563 

These functions accepts parameters such as: 564 

o n_samples for the number of samples  565 

o n_features for the number of features  566 

o n_informative for the number of informative features, i.e., the features that are useful in 567 

predicting the target variable. The remaining features (n_features - n_informative) are 568 

generated as random noise. 569 
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o noise for the standard deviation of the Gaussian noise applied to the output (dependent 570 

variable). 571 

o n_targets for the number of regression targets, i.e., the number of dependent variables. By 572 

default, this is set to 1, meaning that the generated dataset will have a single target variable. 573 

o n_outliers for the number of outliers.  574 

o bias for the bias term in the underlying linear model. 575 

o shuffle to assign whether or not to shuffle the samples and the features. 576 

o effective_rank for the approximate number of singular vectors required to explain most of 577 

the input data by a linear, low rank model. If None, all features are informative. This 578 

parameter can be used to introduce collinearity in the data. 579 

o tail_strength for the relative importance of the fat noisy tail of the singular values profile 580 

if effective_rank is not None. 581 

o seed to assign seed for the random number generator, to ensure the reproducibility of the 582 

results. 583 

In all functions, combination of parameters was assigned to create 18 datasets (see Table 3). The 584 

amount of noise can be increased or decreased by adjusting the noise_scale parameter. In addition, 585 

each function adds a specified number of outliers to the target variable. The outliers are randomly 586 

selected from the samples and have a larger amount of normally distributed random noise added 587 

to them.  588 

Finally, a dictionary named datasets is created to store the generated synthetic datasets. Each 589 

dataset has a descriptive name and is generated by one of the previously described functions, with 590 

specific parameters. This dictionary allows easy access to each dataset by its name, which is useful 591 

when looping through them later to fit and evaluate different ML models.  592 
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Table 3 Datasets used in the regression analysis on synthetic data. 593 

Dataset Function n_samples n_features n_informative n_outliers noise bias shuffle effective_rank tail_strength 

Dataset 1 generate_regression_data 50 5 5 - 0.0 0.0 - - - 

Dataset 2 generate_regression_data 5000 4 4 - 0.1 0.0 - - - 

Dataset 3 generate_regression_data 1000 6 5 - 0.0 10 - - - 

Dataset 4 generate_regression_data 7000 2 2 - 0.0 0.0 False - - 

Dataset 5 generate_regression_data 750 8 6 - 0.0 0.0 - 5 - 

Dataset 6 generate_regression_data 800 4 4 - 0.0 0.0 - - 0.1 

Dataset 7 generate_regression_data 1000 5 3 - 0.0 10 - - - 

Dataset 8 generate_regression_data 2500 3 2 - 0.0 0.0 False - - 

Dataset 9 generate_regression_data 1000 4 4 - 0.9 0.0 - 10 - 

Dataset 10 generate_step_data 2000 7 - - 0.0 - - - - 

Dataset 11 generate_cubic_data 1000 10 - 20 0.5 - - - - 

Dataset 12 generate_synthetic_data 2000 6 - 200 0.8 - - - - 

Dataset 13 generate_exponential_data 2000 5 - 40 0.8 - - - - 

Dataset 14 generate_tan_data 750 8 - - 0.1 - - - - 

Dataset 15 generate_complex_interaction_data 500 7 - - 0.0 - - - - 

Dataset 16 generate_polynomial_data 2000 5 - - 0.1 - - - - 

Dataset 17 generate_exp_log_data 1000 10 - - 0.5 - - - - 

Dataset 18 generate_sin_exp_data 3000 5 - - 0.0 - - - - 

594 
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.A systematic approach to rank models based on the selected multiple metrics is followed. In this 595 

approach, we calculate the average scores for each model across different metrics, assign ranks to 596 

the models for each metric, calculate the sum-based rank across all metrics, and display the ranked 597 

models. This enables a comparative analysis of models based on their performance across various 598 

metrics. The outcome of this analysis is shown in Table 4 as well as Fig. 1.  599 

It is quite clear that SPINEX and most of its derivatives rank well in terms of accuracy and the 600 

bottom half of the total time for training and prediction. The rankings seem to fall in terms of total 601 

time (which also affect the ranking for energy). This is due to the algorithm’s design to check for 602 

feature pairs and interactions.  603 

Table 4 Ranking results of regression experiment on synthetic data 604 

Model MAE R2 Rank Total Time Estimated Energy Rank 

StackingSPINEX 1 1 1 15 16 16 

CatBoostRegressor 6 2 2 16 14 15 

BayesianRidge 3 6 3 4 4 4 

HuberRegressor 2 8 4 7 7 7 

GradientBoostingRegressor 7 3 4 12 12 12 

Ridge 4 7 5 2 1 1 

XGBRegressor 8 5 7 9 11 10 

RandomForestRegressor 9 4 6 14 15 14 

LGBMRegressor 12 9 7 8 8 8 

BaggingSPINEX 11 10 8 17 17 17 

Lasso 5 17 9 1 2 1 

SPINEX 13 11 10 13 13 13 

BoostingSPINEX 10 15 11 18 18 18 

KNeighborsRegressor 14 12 12 5 5 5 

AdaBoostRegressor 15 14 13 10 9 9 

SVR 18 13 14 11 10 11 

DecisionTreeRegressor 17 16 15 6 6 6 

ElasticNet 16 18 16 3 3 3 

 605 

3.1.2 Classification experiments 606 

Similar to the regression counterpart, a number of synthetic datasets for binary classification tasks 607 

were generated using the make_classification function from the sklearn.datasets module. The 608 

function generate_synthetic_data is defined to create synthetic datasets and accepts the following 609 

parameters: 610 

o n_samples is the total number of data points in the dataset. 611 
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o n_features is the total number of features in the dataset. 612 

o n_informative is the number of informative features (i.e., useful for classifying the 613 

samples). 614 

o n_redundant is the number of redundant features (i.e., generated as random linear 615 

combinations of the informative features). 616 

o weights is the proportions of samples assigned to each class. 617 

o flip_y is the fraction of samples whose classes are randomly exchanged. 618 

o class_sep is the factor multiplying the hypercube size, wherein larger values spread out the 619 

classes tend to make the classification task easier. 620 

The function make_classification generates a random n-class classification problem. It returns X 621 

and y, where X is a 2D array of shape n_samples, n_features representing the generated samples, 622 

and y is a 1D array of shape n_samples representing the integer labels for class membership of 623 

each sample. Overall, 18 datasets were synthetically generated and tested. These were labeled 624 

under Series A (see Table 5), and Series B (see Table 5), with varying complexities.  625 

A similar systematic approach to rank the ML models based on the selected multiple metrics is 626 

followed here as that in the regression analysis. The outcome of this analysis is shown in Tables 6 627 

and 7 as well as Figs. 2 and 3. Naturally, most models’ predictions are slightly degraded when 628 

evaluated on the datasets belonging to Series B (given their complexity).  629 

The outcome of the analysis also shows that SPINEX and its derivatives perform much better in this 630 

classification task than in the regression. Overall, and despite its relatively poor ranking under time 631 

and energy consumption, the default version of SPINEX consistently ranks in the top 7 in the overall 632 

ranking. It is clear that the SPINEX model can outperform some of the more common and traditional 633 

algorithms, even in scenarios of imbalanced data and relatively large datasets.  634 

Table 6 Ranking results of classification experiment on synthetic data (Series A) 635 

Models Accuracy LLE AUC Rank Estimated Energy Total Time Rank 

SVC 1 1 1 1 10 15 13 

SPINEXClassifier(default) 2 11 2 2 13 9 12 

StackingSPINEX 7 2 7 2 14 12 14 

BaggingSPINEX 4 7 5 4 15 14 15 

KNeighborsClassifier 3 12 3 4 2 2 2 

BoostingSPINEX 6 5 6 6 11 5 7 

SPINEX 5 6 4 7 12 7 9 

LGBMClassifier 8 4 10 8 4 3 3 

XGBClassifier 9 3 9 9 6 6 5 

RandomForestClassifier 10 8 8 10 8 10 8 

GradientBoostingClassifier 11 9 11 11 9 11 10 
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AdaBoostClassifier 12 13 12 12 5 8 6 

DecisionTreeClassifier 13 14 14 12 3 4 3 

LogisticRegression 14 10 13 14 1 1 1 

CatBoostClassifier - - - - 7 13 10 
*SPINEX = (n_neighbors=20, distance_threshold=0.05, distance_threshold_decay=0.95, ensemble_method=None, metric='manhattan') 636 
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Table 5 Datasets used in the classification analysis on synthetic data  637 

Dataset 
Series A Series B 

n_samples n_features n_informative n_redundant n_samples n_features n_informative n_redundant flip_y class_sep weights 

Dataset 1 50 3 2 0 50 3 2 0 0.01 1.0 0.9/0.1 

Dataset 2 100 10 6 2 100 10 6 2 0.02 0.5 0.8/0.2 

Dataset 3 1000 80 20 40 1000 80 20 40 0.03 0.8 0.7/0.3 

Dataset 4 500 20 20 0 500 20 20 0 0.04 0.2 0.6/0.4 

Dataset 5 5000 40 15 10 5000 40 15 10 0.05 0.3 0.5/0.5 

Dataset 6 10000 10 5 5 10000 10 5 5 0.06 0.4 0.6/0.4 

Dataset 7 500 20 20 0 1500 100 40 0 0.07 0.5 0.7/0.3 

Dataset 8 3000 55 20 20 3000 55 20 20 0.08 0.6 0.8/0.2 

Dataset 9 50000 5 3 0 50000 5 3 0 0.09 0.7 0.6/0.4 

 638 

Table 7 Ranking results of classification experiment on synthetic data (Series B) 639 

Models Accuracy LLE AUC Rank 
Estimated 

Energy 
Total Time Rank 

SPINEXClassifier(default) 3 1 1 1 13 9 12 

StackingSPINEX 2 3 3 2 14 12 14 

SPINEX 7 2 2 3 12 7 9 

KNeighborsClassifier 4 5 5 4 2 2 2 

BaggingSPINEX 6 4 4 4 15 15 15 

LogisticRegression 14 6 6 6 1 1 1 

RandomForestClassifier 11 8 8 7 9 11 10 

DecisionTreeClassifier 15 7 7 8 3 4 3 

SVC 1 14 14 8 8 10 8 

CatBoostClassifier 8 11 11 10 7 14 11 

GradientBoostingClassifier 12 9 9 10 10 13 13 

AdaBoostClassifier 13 10 10 12 5 8 6 

XGBClassifier 9 12 12 12 6 6 5 

BoostingSPINEX 5 15 15 14 11 5 7 

LGBMClassifier 10 13 13 15 4 3 3 

 640 
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3.2 Real datasets 641 

Now, we repeat the analysis using a series of real datasets. These datasets are described in the 642 

following sections.  643 

3.2.1 Regression experiments 644 

Here, 12 real datasets are used to benchmark SPINEX and the other ML models. Table 8 lists details 645 

on each dataset, along with their respective references. As one can see, the selected datasets 646 

comprise a collection of samples and features and cover various problem domains. Further 647 

information can be found in each dataset’s reference. 648 

Table 8 Datasets used in the regression analysis on synthetic data 649 

Dataset n_samples n_features Ref. 

University Admission  401 8 [43] 

Fire Resistance of RC columns 311 13 [44] 

Shear Strength of beams 168 7 [35] 

Concrete Strength  1031 9 [45] 

Deformation of Beams under Fire 1187 7 [46] 

Strength of Steel Tubes 1260 6 [47] 

Energy Efficiency of Buildings 767 10 [48] 

Body Fat Index 252 15 [49] 

Forest Fire Area 517 13 [50] 

Abalone Age 2000 10 [51] 

Synchronous Motor 557 5 [52] 

Walmart Retail 3000 6 [53] 

 650 

A comparative analysis of models based on their performance across various metrics is presented 651 

in Table 9 as well as Fig. 4. The top performing SPINEX derivative ranks 3rd and 4th in terms of 652 

accuracy. Other SPINEX derivates also faired well in terms of accuracy metrics (and outperforming 653 

some of the common algorithms such as LGBMRegressor, RandomForestRegressor, and 654 

GradientBoostingRegressor, but continue to rank at the bottom half due to their large time and 655 

energy used.  656 

Table 9 Ranking results of regression experiment on synthetic data 657 

Model MAE R2 Rank Total Time Estimated Energy Rank 

CatBoostRegressor 1 1 1 3 3 2 

BaggingSPINEX 8 2 2 14 15 14 

SPINEX 4 7 3 13 14 12 

LGBMRegressor 9 4 4 4 4 3 

RandomForestRegressor 3 10 5 12 12 11 

StackingSPINEX 11 3 6 16 16 15 
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GradientBoostingRegressor 5 12 7 15 13 13 

HuberRegressor 12 6 8 6 6 5 

AdaBoostRegressor 13 5 9 8 10 8 

XGBRegressor 2 16 10 10 11 10 

KNeighborsRegressor 10 11 11 5 5 4 

BayesianRidge 14 8 12 1 2 1 

Ridge 15 9 13 2 1 1 

DecisionTreeRegressor 7 17 14 9 8 7 

BoostingSPINEX 6 18 15 18 18 17 

Lasso 16 14 16 7 7 6 

SVR 18 13 17 17 17 16 

ElasticNet 17 15 18 11 9 9 

 658 

3.2.2 Classification experiments 659 

Here, 11 real datasets are used to examine SPINEX and the other ML models as a means for a second 660 

means of validation. Table 10 lists details for each used dataset regarding the number of samples 661 

and features. Further information can be found in each dataset’s reference. 662 

Table 10 Datasets used in the classification analysis on real data 663 

Dataset n_samples n_features Ref. 

Fire-induced Spalling 1062 16 [54] 

Pima Indians Diabetes 768 8 [55] 

Bridge Failures  299 7 [56] 

Concrete Condition in Situ 9683 8 [57] 

Breast Cancer Wisconsin (Original)  569 30 [58,59] 

Rice (Commeo and Osmancik) 3810 7 [60] 

Bank Note Authentication 1372 4 [61] 

Water Potability  2011 9 [62] 

Machine Predictive Maintenance 10000 5 [63] 

Depression Prediction  1409 20 [64] 

Cars Purchase Decision 1000 3 [65] 

 664 

A look into Table 11 shows that GradientBoostingClassifier and CatBoostClassifier seem to rank 665 

constantly among the top two models in terms of accuracy. On the other hand, three versions of 666 

SPINEX (namely, StackingSPINEX and SPINEX) land at 6th and 7th in the overall ranking for accuracy. 667 

Figure 5 shows that despite the low ranking of SPINEX, this algorithm scored comparable 668 

performance to other traditional ML models, such as KNeighborsClassifier, DecisionTreeClassifier, 669 

LogisticRegression, and SVC. 670 
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Table 11 Ranking results of classification experiment on real data 671 

Models Accuracy LLE AUC Rank Estimated Energy Total Time Rank 

RandomForestClassifier 3 5 3 1 9 13 9 

GradientBoostingClassifier 1 2 2 2 8 12 7 

CatBoostClassifier 2 1 1 3 10 15 10 

XGBClassifier 5 4 5 3 6 8 5 

LGBMClassifier 4 3 4 4 5 6 3 

AdaBoostClassifier 6 11 6 5 4 10 5 

StackingSPINEX 7 6 7 6 13 9 9 

SPINEX 9 10 10 7 11 1 4 

DecisionTreeClassifier 8 15 8 8 3 5 2 

BoostingSPINEX 11 8 12 9 15 14 11 

LogisticRegression 15 12 15 11 2 3 1 

BaggingSPINEX 10 9 11 12 14 7 8 

KNeighborsClassifier 13 13 9 12 1 4 1 

SPINEXClassifier(default) 12 14 13 13 12 2 5 

SVC 14 7 14 14 7 11 6 
*SPINEX = (n_neighbors=20, distance_threshold=0.05, distance_threshold_decay=0.95, ensemble_method=None, metric='manhattan') 672 

3.3 Example with explainability  673 

Now, we show one example of the self-interpretability methods included within SPINEX. A sample 674 

case of synthetic dataset of 500 sample points and 5 features is presented herein. The results of the 675 

comparison in terms of accuracy and total time/energy used are shown in Fig. 6. As one can see, 676 

the SPINEX performance is well positioned against the other models.  677 

In terms of model explainability, Fig. 7 shows the calculated feature importance as described in 678 

Sec. 2.0. Comparatively speaking, the calculated trends of feature importance values seem to 679 

parallel that obtained from other models. The same figure also shows plots of other visualizations 680 

that can explain model behvaiour. Such visualization includes average interaction effects and 681 

feature combination between features. In addition, the pairwise interactions and feature importance 682 

at the global level and local level (for a particular instance) are also plotted – please refer to Sec. 683 

2 for a detailed description of each of these visualizations.  684 

4.0 Conclusions 685 

The SPINEX algorithm offers a novel approach for interpretable regression analysis by integrating 686 

ensemble learning with feature interaction analysis. It provides accurate predictions while 687 

unraveling the complex relationships between features and the target variable. The algorithm's 688 

neighbor-based feature importance and interaction effects offer transparent explanations for 689 

individual predictions, allowing users to gain insights into the model's decision-making process. It 690 

is expected that the performance of SPINEX will improve with further development efforts. 691 

 692 
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Data Availability 693 

Some or all data, models, or code that support the findings of this study are available from the 694 

corresponding author upon reasonable request.  695 

SPINEX and its derivatives can be accessed from www.mznaser.com, 696 

https://pypi.org/project/SPINEX/ and https://github.com/mznaser-clemson/SPINEX.   697 

SPINEX can be installed as: 698 

pip install SPINEX 699 

from SPINEX import SPINEXRegressor 700 

from SPINEX import SPINEXClassifer 701 
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