
This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

1

SPINEX: Similarity-based Predictions with Explainable Neighbors Exploration for 1

Regression and Classification 2

M.Z. Naser1,2, Mohammad Khaled al-Bashiti1, A.Z. Naser3,4 3
1School of Civil & Environmental Engineering and Earth Sciences (SCEEES), Clemson University, USA 4

2Artificial Intelligence Research Institute for Science and Engineering (AIRISE), Clemson University, USA 5
E-mail: mznaser@clemson.edu, malbash@g.clemson.edu, Website: www.mznaser.com 6

3School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada, E-mail: anaser@uoguelph.ca 7
4Department of Mechanical Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada 8

Abstract 9

The field of machine learning (ML) has witnessed significant advancements in recent years. 10

However, many existing algorithms lack interpretability and struggle with high-dimensional and 11

imbalanced data. This paper proposes SPINEX, a novel similarity-based interpretable neighbor 12

exploration algorithm designed to address these limitations. This algorithm combines ensemble 13

learning and feature interaction analysis to achieve accurate predictions and meaningful insights 14

by quantifying each feature's contribution to predictions and identifying interactions between 15

features, thereby enhancing the interpretability of the algorithm. To evaluate the performance of 16

SPINEX, extensive experiments on 59 synthetic and real datasets were conducted for both 17

regression and classification tasks. The results demonstrate that SPINEX achieves comparative 18

performance and, in some scenarios, may outperform commonly adopted ML algorithms. The 19

same findings demonstrate the effectiveness and competitiveness of SPINEX, making it a promising 20

approach for various real-world applications. 21

Keywords: Algorithm; Machine learning; Interpretability; Supervised learning. 22

1.0 Introduction 23

The rapid growth of machine learning (ML) techniques has revolutionized various domains, 24

enabling accurate predictions and decision-making [1,2]. However, challenges persist, such as the 25

lack of interpretability in complex models [3]. This has led to a growing interest in interpretable 26

ML algorithms [4]. While existing approaches, such as decision trees and linear models, offer 27

interpretability, they often sacrifice predictive performance. Conversely, complex models like 28

neural networks and ensemble methods achieve high accuracy but lack interpretability [5]. 29

In the vast landscape of algorithmic design, similarity-based algorithms are potent methods for 30

tackling various prediction problems [6,7]. These algorithms rely on the premise that similar 31

objects share similar properties and hence draw their strength from leveraging instance similarities 32

and proximity to make predictions or categorizations/clustering. This approach is particularly 33

useful in recommendation systems, classification tasks, and regression problems, where the goal 34

is to predict an outcome based on the similarity of the input data to previously seen examples. 35

The core idea behind such models is to find the 'neighbors' of a given data point in the feature 36

space. Once these neighbors are identified, they are used to predict the given data point. This can 37

be realized by taking a weighted average of the neighbors' outcomes, where the weights are 38

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518
mailto:mznaser@clemson.edu
mailto:malbash@g.clemson.edu
http://www.mznaser.com/
mailto:anaser@uoguelph.ca

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

2

determined by the similarity of each neighbor to the given data point. This underlying principle is 39

harnessed in various contexts, such as document retrieval [8], image recognition [9], etc. 40

One of the key advantages of these models is their explainability. Unlike many other ML models, 41

similarity-based models can provide clear explanations for their predictions based on specific, 42

identifiable neighbors rather than abstract mathematical functions. However, the concept of 43

'similarity' is not always straightforward. Different similarity measures may be appropriate for 44

different data types, and choosing the right measure (i.e., including the number of neighbors) can 45

significantly impact the model's performance [10]. 46

In addition to these challenges, these models also face the 'curse of dimensionality'. This refers to 47

the fact that as the number of features (dimensions) in the data increases, similarity can become 48

less meaningful. This is because, in high-dimensional spaces, all data points tend to be 'far away' 49

from each other, making it difficult to find meaningful neighbors. Despite these challenges, recent 50

research has shown that these models can achieve superior performance on a variety of tasks. For 51

example, these models have been successfully applied to recommendation systems and 52

classification tasks, where they have been shown to outperform traditional collaborative filtering 53

approaches [11,12]. Notable reviews on this front can be found elsewhere [13–15]. 54

As mentioned above, one way to implement the similarity-based approach is to use a nearest-55

neighbor algorithm. The nearest neighbor algorithm finds the k most similar objects to a given 56

object and then predicts the label of the given object based on the labels of the k nearest neighbors. 57

Such algorithms rely on the idea that the characteristics of an object can be inferred from those of 58

its close neighbors [16]. In a kNN algorithm, the class of a new object is determined by the classes 59

of its k nearest neighbors in the training set. The "closeness" of objects is typically defined in terms 60

of some distance measure, such as Euclidean distance for numeric data or Hamming distance for 61

categorical data [17]. The strength of such methods is their simplicity and intuitiveness since their 62

predictions are directly tied to the observed data [18,19]. 63

On a different front, ML based on similarity computation approaches was reported to achieve 64

promising experimental results in Natural Language Processing (NLP). Mikolov et al. [32] 65

introduced two models that were designed to calculate continuous vector representations of words 66

from extensive datasets via similarity tasks and showed superior accuracy to various neural 67

networks. Also, the new similarity-based models were reported to outperform former models in 68

terms of computational cost as they require less than a day to learn high quality word vectors from 69

a more than 1.5 billion words dataset, demonstrating high merit in utilizing semantic word 70

similarities. 71

1.1 Related works 72

Central to similarity-based algorithms’ functionality is the concept of identifying the nearest 73

neighbors to a given data point of interest; these neighbors collectively contribute to the prediction 74

[20]. This central characteristic is particularly advantageous in scenarios where the underlying data 75

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

3

distribution is unknown or complex and allows direct application in pattern recognition [21], 76

recommendation systems [22], and medical diagnosis [23,24]. 77

Over the years, various studies have explored the effectiveness of similarity-based algorithms. One 78

significant area of research has been related to weighted nearest neighbors, where different 79

neighbors are assigned different weights based on their distance from the target point [25]. This 80

approach mitigates some of the limitations of the basic-like algorithms, which treat all neighbors 81

equally (regardless of their proximity to the target point). Another aspect has been the exploration 82

of efficient algorithms for large datasets. This stems from the fact that the brute-force approach of 83

comparing a target point with every other point in a large dataset can be computationally 84

impractical [26]. This challenge has led to the development of various indexing structures and 85

algorithms [27]. 86

The integration of similarity-based algorithms with other ML techniques, such as deep learning, 87

presents an exciting theme for exploration [28,29]. For example, recent works have adopted 88

similarity-based algorithms with clustering [30] and anomaly detection [31]. Dudek and Pelka [7] 89

explored the application of pattern similarity-based models. They noted that experimental results 90

collected across 35 European countries showed that such models outperformed the classical 91

statistical and ML models in terms of accuracy, simplicity, and ease of optimization. 92

1.2 Key contributions of this work 93

From the lens of this paper, we propose a novel ML algorithm, SPINEX (Similarity-based 94

Predictions with Explainable Neighbors Exploration), which combines similarity-based predictions 95

and neighbors’ exploration. SPINEX offers interpretability through feature contribution analysis and 96

interaction effects. A number of extensive experiments were carried out to validate the 97

effectiveness and competitiveness of SPINEX in both regression and classification tasks. More 98

specifically, to evaluate the performance of SPINEX, 59 experiments were conducted on diverse 99

synthetic and real datasets covering a wide range of domains. The experimental results 100

demonstrate the effectiveness and competitiveness of SPINEX compared to state-of-the-art 101

algorithms. Therefore, this paper contributes to the field by proposing a novel ML algorithm that 102

combines the strengths of similarity-based predictions and neighbors’ exploration, offers 103

interpretability, and demonstrates its effectiveness and competitiveness in regression and 104

classification tasks. 105

The rest of the paper is organized as follows: Section 2 presents the methodology of SPINEX, 106

explaining each component in detail. Section 3 discusses the experimental setup and presents the 107

results of the experiments conducted. Finally, Section 4 concludes the paper, highlighting the 108

contributions of SPINEX and suggesting potential future directions for research. 109

2.0 Description of SPINEX 110

The SPINEX algorithm comprises several components that provide interpretable regression and 111

classification analysis. First, it begins with a data preprocessing step, then calculates pairwise 112

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

4

distances between instances using a user-defined metric. Based on these distances, weights are 113

assigned to the instances using a Gaussian kernel function. This step allows SPINEX to emphasize 114

the influence of the most relevant neighbors during prediction. SPINEX also accommodates single 115

and ensemble models to capture the inherent complexity of the data. This algorithm builds on the 116

concept of neighbor-based feature importance, which measures the contribution of each feature to 117

the prediction by considering the influence of its neighboring instances [33]. This approach 118

provides a more nuanced understanding of feature importance, accounting for individual feature 119

effects and their dependencies on nearby instances. 120

SPINEX also incorporates feature interaction analysis, which explores the interactions between 121

different feature combinations to identify synergistic or antagonistic effects on the target variable. 122

Further, SPINEX enables the generation of local explanations to gain insights into individual 123

predictions. By considering the neighbors of a specific instance, the algorithm quantifies the 124

importance of each feature and its interaction effects within the local context. 125

To facilitate the interpretation and analysis of SPINEX -based models, the proposed algorithm 126

provides various visualization techniques, including feature importance plots, which show the 127

relative contribution of each feature to the prediction, and interaction effect heatmaps, which 128

visualize the interaction effects between different feature combinations. The algorithm also offers 129

tools to analyze the change in predictions with the addition of neighbors, enabling the exploration 130

of the model's behavior in response to nearby instances. Table 1 qualitatively compares SPINEX to 131

other commonly used ML algorithms, which were also utilized in this work's experiments in a later 132

section. 133

The following discussion further articulates the working mechanisms (i.e., functions and methods) 134

of SPINEX for two versions of this algorithm: SPINEXRegressor and SPINEXClassifier. 135

Data Preprocessing: The SPINEX algorithm applies several preprocessing steps using the 136

DataPreprocessor class. Given data matrix X ∈ ℝⁿˣᵈ and corresponding label vector y ∈ ℝⁿ, 137

preprocess the data to handle missing values, outliers, and perform feature selection. This includes 138

handling missing data (removing or imputing), outlier detection and removal, and feature selection. 139

The feature selection process uses a local search strategy, and the user can specify prioritized 140

features for inclusion. 141

Distance Calculation: Distances between instances are calculated in the feature space. For a given 142

distance metric d, calculate the distance Dᵢⱼ between every pair of instances (xᵢ, xⱼ) as Dᵢⱼ = d(xᵢ, xⱼ). 143

These distances are computed using the specified distance metric (Manhattan distance by default) 144

and are then stored in a distance matrix. The user can specify the distance metric according to the 145

problem at hand. 146

Weight Calculation: Weights are assigned to each of the training instances based on their distances 147

to the test instance. The weights are computed using the Gaussian kernel function, where instances 148

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

5

closer to the test instance will have higher weights such that wᵢ for each instance xᵢ based on their 149

distances to the test instance xₜ as follows: wᵢ = exp(- (Dᵢₜ² / (2σ²))), where σ is the standard 150

deviation of the distances. The standard deviation for the Gaussian kernel is computed as the mean 151

of the distances. 152

Prediction: Predictions are made by considering the n nearest neighbors to a given test instance. 153

The label ŷₜ for a test instance xₜ as ŷₜ = argmax_y ∑ wᵢ * I(yᵢ = y), where I is the indicator function 154

that is 1 if yᵢ equals y and 0 otherwise, and the sum is over the n nearest neighbors of the test 155

instance. The number of neighbors, n, is a user-defined parameter. The algorithm identifies these 156

nearest neighbors based on the distance matrix. Once the neighbors are identified, they are 157

combined based on the assigned weights to make a prediction. 158

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors Exploration for Regression and Classification.

Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

6

Table 1 Qualitative comparison between SPINEX and commonly used ML algorithms 159
 160

Algorithm
Feature

Importance

Interaction
Effects

Interpretability
Model

Complexity

Ensemble
Learning

Handling
Categorical

Features

Handling
Imbalanced

Data

Speed Inference Model Size
Parallel

Computing

SPINEX Yes Yes Medium Medium Yes No No Medium Fast Medium Yes

Logistic
Regression

Yes No High Low No No No High Fast Small Yes

Decision
Tree

Yes No High Varies No Yes No High Fast Varies Yes

Random
Forest

Yes No Medium High Yes Yes Yes Medium Fast Large Yes

Gradient
Boosting

Yes No Medium High Yes Yes Yes Low Fast Large Yes

AdaBoost Yes No Medium High Yes Yes Yes Medium Fast Large Yes

CatBoost Yes No Medium High Yes Yes Yes Medium Fast Large Yes

XGBoost Yes No Medium High Yes Yes Yes High Fast Large Yes

LightGBM Yes No Medium High Yes Yes Yes High Fast Large Yes

Support
Vector

Classifier
No No Low High No Yes Yes Low Slow Large Yes

K-Nearest
Neighbors

No No High Low No No No Low Slow Small Yes

 161

▪ Feature Importance: Indicates whether the algorithm can provide feature importance or contribution scores. 162

▪ Interaction Effects: Indicates whether the algorithm can capture and quantify interaction effects between features. 163

▪ Interpretability: Assesses the ease of understanding and explaining the model's behavior and predictions. 164

▪ Model Complexity: Indicates the complexity of the model. It assesses the level of complexity in terms of the number of parameters or rules used by the algorithm. 165

▪ Ensemble Learning: Indicates whether the algorithm supports ensemble learning. Ensemble learning combines multiple models to improve performance. 166

▪ Handling Categorical Features: Indicates whether the algorithm has built-in mechanisms to handle categorical features. 167

▪ Handling Imbalanced Data: Indicates whether the algorithm has techniques to handle imbalanced datasets, where the number of instances in different classes is 168

unequal. 169

▪ Speed: Represents the speed of the algorithm for training and prediction tasks. It assesses the algorithm's efficiency in terms of computational time. 170

▪ Inference: Indicates whether the algorithm supports efficient inference or prediction on new, unseen data after training. 171

▪ Model Size: Assesses the memory footprint or storage requirements of the model. 172

▪ Parallel Computing: Indicates whether the algorithm can leverage parallel computing capabilities to speed up training or prediction tasks. 173

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

7

Feature contribution refers to the individual impact or importance of each feature on the prediction 174

made by SPINEX. The algorithm calculates feature contributions using a neighbor-based approach. 175

Once the neighbors are determined, the algorithm analyzes the difference in predictions between 176

the original instance and its neighbors. This difference reflects the contribution of each feature to 177

the prediction. Specifically, the algorithm compares the prediction made by the model when a 178

particular feature is present in the instance with the prediction when that feature is absent. 179

Mathematically, the contribution Cₖ of a feature fₖ for an instance xᵢ as Cₖ = P(y|xᵢ) - P(y|xᵢ^-fₖ), 180

where P(y|xᵢ) is the prediction probability for the instance xᵢ and P(y|xᵢ^-fₖ) is the prediction 181

probability for the instance xᵢ with the k-th feature excluded. Calculate the interaction effect Iₖₗ 182

between two features fₖ and fₗ as Iₖₗ = Cₖ + Cₗ - Cₖₗ, where Cₖₗ is the change in prediction probability 183

when both features are excluded. 184

The larger the difference, the more significant the contribution of the feature to the prediction. The 185

feature contribution calculation takes into account the influence of neighboring instances, allowing 186

the algorithm to capture the contextual importance of each feature. This approach provides a more 187

nuanced understanding of feature importance, as it considers both the individual feature effects 188

and their dependencies on nearby instances. 189

o In regression and classification algorithms, feature contributions are calculated by 190

predicting the output with and without a given feature, then taking the difference. This 191

indicates how much the prediction changes when a feature is removed, i.e., the 192

"contribution" of the feature. 193

✓ In the regression algorithm, the method compute_contributions() is used to 194

calculate feature contributions. It does this by predicting the output value with 195

and without each feature and taking the difference. 196

✓ In the classification algorithm, the method predict_contributions() is used to 197

calculate feature contributions. It does this by predicting class probabilities with 198

and without each feature and taking the difference. 199

o Interaction effects refer to the combined impact of feature combinations on the 200

prediction made by the SPINEX regression model. The algorithm analyzes the 201

interactions between pairs or sets of features to identify synergistic or antagonistic 202

effects that go beyond the individual contributions of the features. The algorithm 203

examines the change in predictions when specific feature combinations are present or 204

absent from calculating interaction effects. It compares the prediction made by the 205

model with a particular feature combination to the prediction when that feature 206

combination is removed. The difference in predictions reflects the interaction effect 207

between the features in the combination. The algorithm considers all possible feature 208

combinations, ranging from pairs to larger sets, to explore the full landscape of 209

interactions. It quantifies the impact of each feature combination on the prediction, 210

providing insights into the synergies or antagonisms between different features. 211

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

8

✓ In the regression algorithm, compute_combination_impact() is used to 212

calculate interaction effects. It does this by predicting the output value with all 213

features, with one feature removed and two removed, and then calculating the 214

interaction effect as described above. 215

✓ In the classification algorithm, the method predict_contributions() is used to 216

calculate interaction effects. It does this by predicting class probabilities with 217

all features, with one feature removed and two features removed, and then 218

calculating the interaction effect described above. 219

o Overall, the calculation of feature contributions and interaction effects is very similar 220

in both the SPINEX classification and regression algorithms. The main difference is in 221

the predicted output (class probabilities vs. output value) and the context in which these 222

calculations are used (classification vs. regression). 223

Feature Importance and Impact Analysis: Feature importance is calculated as the mean absolute 224

contribution of a feature across all instances. For example, the importance Fₖ of a feature fₖ as Fₖ 225

= (1/n) ∑ |Cₖ|. Calculate the impact IF of a combination of features F as IF = P(y|xᵢ) - P(y|xᵢ^-F), 226

where P(y|xᵢ-F) is the prediction probability when all features in F are excluded. The impact of 227

feature combinations is calculated by excluding a combination of features and computing the 228

change in prediction probabilities. The results are sorted by impact, providing insight into which 229

combinations of features are most important. 230

▪ Model Ensembling: The SPINEX model can be used as a base classifier in ensemble models. 231

The user can specify an ensemble method, and the SPINEX classifier is then combined with 232

other classifiers (like DecisionTreeClassifier) to make a final prediction. Three ensemble 233

methods are used in the script: Stacking (where the predictions of the base classifiers are 234

used as input to a final classifier), Bagging (where multiple instances of the SPINEX 235

classifier are trained on random subsets of the training data), and Boosting (where multiple 236

instances of the SPINEX classifier are trained sequentially, with each one focusing on the 237

instances that the previous classifiers misclassified). For base classifiers h₁, ..., hₚ, in the 238

case of Stacking, calculate the final prediction h(x) as h(x) = g(h₁(x), ..., hₚ(x)), where g is the 239

final classifier. In the case of Bagging, calculate h(x) as h(x) = majority(h₁(x), ..., hₚ(x)). In 240

the case of Boosting, calculate h(x) as h(x) = weighted_majority(h₁(x), ..., hₚ(x)). 241

2.3 SPINEX for regression 242

Inputs: 243

 X_train: Training feature matrix 244

 y_train: Training target vector 245

 X_test: Test feature matrix 246

 distance_metric: Distance metric for calculating pairwise distances 247

 num_neighbors: Number of nearest neighbors to consider 248

 kernel_width: Width of the Gaussian kernel 249

 250

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

9

Procedure SPINEX: 251

 Preprocess(X_train, X_test) 252

 distances = CalculateDistances(X_train, X_test) 253

 weights = CalculateWeights(distances) 254

 predictions = Predict(X_train, y_train, X_test, weights) 255

 Return predictions 256

 257

Procedure Preprocess(X_train, X_test): 258

 # Handle missing data and outliers in X_train and X_test 259

 260

Procedure CalculateDistances(X_train, X_test): 261

 distances = empty matrix of size (number of test instances) x (number of training instances) 262

 For each test_instance in X_test: 263

 For each train_instance in X_train: 264

 distances[test_instance][train_instance] = calculateDistance(test_instance, train_instance, distance_metric) 265

 Return distances 266

 267

Procedure CalculateWeights(distances): 268

 weights = empty matrix of size (number of test instances) x (number of training instances) 269

 For each test_instance in distances: 270

 sorted_distances = sort(distances[test_instance]) # Sort distances in ascending order 271

 kernel_bandwidth = kernel_width * mean(sorted_distances) # Compute kernel bandwidth 272

 For i = 0 to num_neighbors - 1: 273

 weights[test_instance][i] = calculateWeight(sorted_distances[i], kernel_bandwidth) 274

 Return weights 275

 276

Procedure Predict(X_train, y_train, X_test, weights): 277

 predictions = empty vector of size (number of test instances) 278

 For each test_instance in X_test: 279

 nearest_neighbors = GetNearestNeighbors(weights[test_instance], num_neighbors) 280

 prediction = CalculatePrediction(nearest_neighbors, y_train) 281

 predictions[test_instance] = prediction 282

 Return predictions 283

 284

Procedure GetNearestNeighbors(weights, num_neighbors): 285

 sorted_indices = indices of weights sorted in descending order 286

 nearest_neighbors = first num_neighbors indices from sorted_indices 287

 Return nearest_neighbors 288

 289

Procedure CalculatePrediction(nearest_neighbors, y_train): 290

 prediction = average of y_train values corresponding to nearest_neighbors 291

 Return prediction 292

Explanation of main functions and methods: 293

▪ Fitting and Predicting with SPINEXRegressor 294

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

10

- fit(X, y): This method trains the SPINEX regression model using training data X and target 295

values y. 296

- predict(X): This method predicts the target values for a given set of input samples X, using 297

the trained SPINEX regression model. 298

- predict_contributions(X): This method predicts the contributions of each feature to the 299

target values for a given set of input samples X. 300

▪ Analysis & Visualization of Feature Importance and Interaction Effects 301

- get_feature_importance(X): This method calculates the feature importances for each 302

feature in X. 303

- get_global_interaction_effects(X): This method calculates the average interaction effects 304

for each feature in the dataset. 305

- feature_combination_impact_analysis(X): This method analyzes the impact of different 306

combinations of features on the model's predictions. 307

- normalize_importances(importances): A utility function for normalizing feature 308

importances. 309

- visualize_feature_importances(local_importances, global_importances, 310

feature_names): This method generates a bar plot to compare local and global 311

feature importances. 312

- visualize_interaction_effects(interaction_effects_df): This method generates a bar plot to 313

show the interaction effects between different features. 314

- plot_average_interaction_network(avg_interaction_effects, feature_names=None): 315

This function creates a network graph to visualize the interactions between different 316

features. 317

- plot_contribution_heatmaps(contributions, interaction_effects, feature_names=None): 318

This function creates two heatmaps - one for individual feature contributions and 319

one for pairwise interactions. 320

▪ Local Explanations & Visualizations 321

- get_local_explanation(X, instance_to_explain): This method calculates the local feature 322

importances for a specific instance. 323

- get_local_interaction_effects(X, instance_to_explain): This method calculates the local 324

interaction effects for a specific instance. 325

- plot_prediction_change(X, y, instance_to_explain): This function visualizes how the 326

prediction changes as each neighbor is added. 327

- visualize_neighbor_counts(neighbor_counts): This function visualizes the counts of each 328

neighbor in a bar plot. 329

▪ Influence of Feature Combinations & Local Changes 330

- plot_feature_pair_influence(X, instance_to_explain, feature_pair, grid_size=20): This 331

method generates a 3D plot to show how changing the values of a pair of features 332

influences the prediction. 333

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

11

- plot_feature_triplet_influence(X, instance_to_explain, feature_triplet, feature_names, 334

grid_size=20): This method generates a 3D scatter plot to show how changing the 335

values of a triplet of features influences the prediction. 336

- explore_local_changes(X, instance_to_explain, feature_to_explore, grid_size=100, 337

feature_range=None): This method generates a series of predictions by varying the 338

value of a specific feature and keeping all other features constant. 339

- plot_local_changes(X, instance_to_explain, feature_to_explain, grid_size=100, 340

feature_range=None, feature_name=None): This function visualizes how the 341

prediction changes as the value of a specific feature changes. 342

- explore_all_local_changes(X, instance_to_explain, grid_size=100, feature_range=None): 343

This function generates a series of predictions by varying the values of all features 344

one by one and keeping all other features constant. 345

- explore_local_changes_for_pair(X, instance_to_explain, feature_pair, grid_size=100, 346

feature_range=None): This method generates a series of predictions by varying the 347

values of a pair of features and keeping all other features constant. 348

- explore_local_changes_for_triplet(X, instance_to_explain, feature_triplet, grid_size=10, 349

feature_range=None): This method generates a series of predictions by varying the 350

values of a triplet of features and keeping all other features constant. 351

The following are the hyperparameters for the regression version of SPINEX (many of which are 352

similar to those for the classification version): 353

▪ n_neighbors: This parameter controls the number of neighbors to use for neighbor queries. 354

The choice of n_neighbors affects the predictions made by the model: a smaller number 355

makes the model more sensitive to local variations in the data, while a larger number makes 356

the predictions more stable at the expense of potentially ignoring smaller patterns. 357

▪ distance_threshold: This parameter is used in the calculation of instance weights. Weights 358

are calculated as the reciprocal of the sum of the distance to each neighbor and the decayed 359

distance threshold. The distance_threshold parameter thus controls how much influence 360

more distant neighbors have on the prediction of a given instance. 361

▪ distance_threshold_decay: This parameter controls the decay rate of the distance 362

threshold. A lower decay rate means that the influence of more distant neighbors decays 363

more quickly. 364

▪ ensemble_method: This parameter allows the user to specify an ensemble method to use 365

in combination with SPINEX. Options include bagging, boosting, and stacking. Ensemble 366

methods combine the predictions of multiple models to improve predictive performance. 367

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

12

▪ n_features_to_select: This parameter controls the number of features to select for training 368

the model. If auto_select_features is set to True, the model will automatically select the 369

features it deems most important. 370

▪ auto_select_features: If this parameter is set to True, the model will automatically select 371

a subset of features for training. The number of features to select is controlled by the 372

n_features_to_select parameter. 373

▪ use_local_search: If this parameter is set to True, the model will perform a local search to 374

select the best features for training. This can potentially improve the model's performance 375

but may also increase training time. 376

▪ prioritized_features: This parameter allows the user to specify a list of features that should 377

be prioritized in the feature selection process. 378

▪ missing_data_method: This parameter allows the user to specify the method for handling 379

missing data. Options include mean_imputation, which replaces missing values with the 380

mean of the existing values, and deletion, which removes instances with missing values. 381

▪ outlier_handling_method: This parameter allows the user to specify the method for 382

handling outliers. Options include z_score_outlier_handling, which removes instances that 383

have a Z-score greater than 3, and iqr_outlier_handling, which removes instances that fall 384

outside a certain range defined by the interquartile range (IQR). 385

▪ exclude_method: This parameter allows the user to specify a method for excluding certain 386

instances from the training set. This could be used, for example, to exclude instances 387

considered outliers based on some criterion. 388

2.4 SPINEX for classification 389

Inputs: 390

 X_train: Training feature matrix 391

 y_train: Training target vector (class labels) 392

 X_test: Test feature matrix 393

 distance_metric: Distance metric for calculating pairwise distances 394

 num_neighbors: Number of nearest neighbors to consider 395

 kernel_width: Width of the Gaussian kernel 396

 397

Procedure SPINEX: 398

 Preprocess(X_train, X_test) 399

 distances = CalculateDistances(X_train, X_test) 400

 weights = CalculateWeights(distances) 401

 predictions = Predict(X_train, y_train, X_test, weights) 402

 Return predictions 403

 404

Procedure Preprocess(X_train, X_test): 405

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

13

 # Handle missing data and outliers in X_train and X_test 406

 407

Procedure CalculateDistances(X_train, X_test): 408

 distances = empty matrix of size (number of test instances) x (number of training instances) 409

 For each test_instance in X_test: 410

 For each train_instance in X_train: 411

 distances[test_instance][train_instance] = calculateDistance(test_instance, train_instance, distance_metric) 412

 Return distances 413

 414

Procedure CalculateWeights(distances): 415

 weights = empty matrix of size (number of test instances) x (number of training instances) 416

 For each test_instance in distances: 417

 sorted_distances = sort(distances[test_instance]) # Sort distances in ascending order 418

 kernel_bandwidth = kernel_width * mean(sorted_distances) # Compute kernel bandwidth 419

 For i = 0 to num_neighbors - 1: 420

 weights[test_instance][i] = calculateWeight(sorted_distances[i], kernel_bandwidth) 421

 Return weights 422

 423

Procedure Predict(X_train, y_train, X_test, weights): 424

 predictions = empty vector of size (number of test instances) 425

 For each test_instance in X_test: 426

 nearest_neighbors = FindNearestNeighbors(weights[test_instance], num_neighbors) 427

 prediction = CalculatePrediction(nearest_neighbors, y_train) 428

 predictions[test_instance] = prediction 429

 Return predictions 430

 431

Procedure FindNearestNeighbors(weights, num_neighbors): 432

 sorted_indices = indices of weights sorted in descending order 433

 nearest_neighbors = first num_neighbors indices from sorted_indices 434

 Return nearest_neighbors 435

 436

Procedure CalculatePrediction(nearest_neighbors, y_train): 437

 class_counts = empty dictionary 438

 For each neighbor in nearest_neighbors: 439

 class_label = y_train[neighbor] 440

 If class_label is not in class_counts: 441

 class_counts[class_label] = 1 442

 Else: 443

 class_counts[class_label] += 1 444

 prediction = class label with the highest count in class_counts 445

 Return prediction 446

Explanation of main functions and methods: 447

▪ Fitting and Predicting with SPINEXClassifier 448

- fit(X, y): This method trains the SPINEX classification model using training data X and 449

target values y. 450

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

14

- predict(X): This method predicts the target values for a given set of input samples X, using 451

the trained SPINEX classification model. 452

▪ Assessing Model Accuracy 453

- score(X, y): This method calculates the mean accuracy on the given test data and labels. 454

▪ Analysis & Visualization of Feature Importance and Interaction Effects 455

- get_feature_contributions(X): This method calculates the contributions of each feature 456

for a given instance. 457

- plot_feature_contributions(feature_contributions): This method generates a bar plot to 458

visualize the contributions of each feature. 459

- get_feature_interactions(X): This method calculates the interactions between every pair 460

of features for a given instance. 461

- plot_feature_interactions(feature_interactions): This method generates a heatmap to 462

visualize the interaction effects between different features. 463

- plot_prediction_change(X, y): This function visualizes how the prediction changes as 464

each neighbor is added. 465

▪ Local Explanations & Visualizations 466

- get_local_explanation(X, instance_to_explain): This method calculates the local feature 467

importances and neighbor counts for a specific instance. 468

- get_local_interaction_effects(X, instance_to_explain): This method calculates the local 469

interaction effects for a specific instance. 470

- visualize_neighbor_counts(neighbor_counts): This function visualizes the counts of each 471

neighbor in a bar plot. 472

▪ Influence of Feature Combinations & Local Changes 473

- plot_all_feature_contributions(model, X): This function generates a scatter plot to 474

visualize the contributions of all features. 475

- get_global_interaction_effects(X, y) and feature_combination_impact_analysis(X, y): 476

These functions calculate the average interaction effects and the impact of feature 477

combinations for all instances in the dataset. 478

- get_feature_importance(X, instance_to_explain): This method obtains the feature 479

importances and interaction effects for selected instances. 480

- plot_feature_pair_influence(X, instance_to_explain, feature_pair): This method 481

generates a scatter plot to show how changing the values of a pair of features 482

influences the prediction. 483

- plot_feature_triplet_influence(X, instance_to_explain, feature_triplet): This method 484

generates a scatter plot to show how changing the values of a triplet of features 485

influences the prediction. 486

3.0 Description of benchmarking experiments, algorithms, and datasets 487

This section describes the experimental examination used to benchmark SPINEX. For a start, SPINEX 488

was examined against ten other commonly used ML algorithms, namely, Logistic Regression, 489

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

15

Decision Tree, Random Forest, Gradient Boosting, AdaBoost, CatBoost, XGBoost, LightGBM, 490

Support Vector Classifier, and K-Nearest Neighbors. All of these models were used in their default 491

settings1. 492

A series of synthetic and real regression and classification datasets were used. Many of these 493

datasets were also recently benchmarked via several ML algorithms [34,35]. Each dataset is 494

checked per the recommendations of recent researchers aimed at measuring data health. Three 495

criteria were selected, and all of these criteria were satisfied, 496

• Van Smeden et al. [36] require a minimum set of 10 observations per feature. 497

• Riley et al. [37] suggest a minimum of 23 cases per feature. 498

• Frank and Todeschini [38] recommend maintaining a minimum ratio of 3 and 5 between 499

the number of observations and features. 500

A 5-fold cross-validation technique is applied in regression experiments, and in classification 501

experiments, a stratified 10-fold cross-validation technique is applied [39–41]. The performance 502

of the ML models created is evaluated via a number of regression and classification metrics, as 503

listed in Table 2 [42]. For regression problems, the metrics included the mean absolute error 504

(MAE) and coefficient of determination (R2). In general, lower values of MAE and values close 505

to positive unity for R2 are favorable. In addition, the classification metrics include accuracy, 506

logloss error, and the area under the receiver operating characteristic (ROC) curve (AUC). 507

Naturally, higher values of accuracy and AUC and lower values of the logloss metrics are 508

favorable. Finally, a newly-derived functional metrics is also used estimated energy. 509

Table 2 List of common performance metrics. 510

Metric Formula

Regression

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝐴𝑖|

𝑛
𝑖=1

𝑛

Coefficient of Determination (R2)
𝑅2 = 1 − ∑(𝑃𝑖 − 𝐴𝑖)

2

𝑛

𝑖=1

/ ∑(𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛)2

𝑛

𝑖=1

A: actual measurements, P: predictions, n: number of data points.

Classification

Accuracy
𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁

P: predictions, N: number of real negatives, TP: number of true positives,
TN: number of true negatives.

1 The default setting for SPINEX include:

▪ SPINEXRegressor = SPINEX(n_neighbors=5, distance_threshold=0.05, distance_threshold_decay=0.05,
ensemble_method=None, n_features_to_select=None, auto_select_features=False, use_local_search=False,
prioritized_features=None, missing_data_method='mean_imputation', outlier_handling_method='z_score_outlier_handling',
exclude_method='zero')

▪ SPINEXClassifier = SPINEX(n_neighbors=5, distance_threshold=0.05, distance_threshold_decay=0.95,
ensemble_method=None, metric='euclidean')

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

16

Logloss error
𝐿𝐿𝐸= − ∑ 𝐴𝑖𝑙𝑜𝑔𝑃

𝑀

𝑐=1

M: number of classes, c: class label, y: binary indicator (0 or 1) if c is the
correct classification for a given observation.

Area under the ROC curve
𝐴𝑈𝐶= ∑

1

2
(𝐹𝑃𝑖+1 − 𝐹𝑃𝑖)

𝑁−1

𝑖=1

(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖)

FP: number of false positives, FN: number of false negatives.

Functional metric (from [34])

Estimated Energy

𝑀𝑆 × (𝑇𝑇 + 𝑃𝑇)
MS: model size, TT: training time, and PT: prediction time. Smaller values
are favorable with a hypothetical minimum value = 1.0 MB × 10 sec = 10

MB.sec.

3.1 Synthetic datasets 511

A collection of functions that generate synthetic data sets, each simulating different types of 512

relationships between features and the target, were used in our experiments. These datasets are 513

useful for testing and evaluating ML models' performance (see Table 3). 514

3.1.1 Regression experiments 515

The make_regression function from the sklearn.datasets module was used herein. More 516

specifically, four primary functions are used. These include: 517

▪ generate_regression_data function generates random regression data. The underlying 518

equation for this function can be represented as: 519

y = X₁w₁ + X₂w₂ + ... + Xₙwₙ + b + ε 520

Here, 'X' represents the input features, w signifies the weights, b is the bias, and ε is a random 521

noise term. 522

▪ generate_synthetic_data function generates a dataset where the relationship between the 523

features and the target is a combination of a quadratic function, a sinusoidal function, and a 524

simple multiplication. This is a somewhat complex relationship, which would provide a 525

challenge to many types of machine learning models. The equation for this function is: 526

y = X₀ + X₁¹ + X₂² + ... + Xₙⁿ + ε + outlier_noise 527

In this equation, ε represents random noise, while outlier_noise is additional noise added to 528

randomly chosen samples. 529

▪ generate_cubic_data function creates a dataset where the relationship between the features 530

and the target is a combination of a cubic function, a squared function, and a simple 531

multiplication. This type of dataset is useful for testing how well a model can handle cubic 532

relationships. Here, the equation is: 533

y = X₀ + X₁³ + X₂⁴ + ... + Xₙⁿ⁺² + ε + outlier_noise 534

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

17

▪ generate_exponential_data function creates a dataset with an exponential relationship 535

between one of the features and the target, a decaying exponential for another feature, and 536

simple linear relationships for the remaining features. The equation for this function is: 537

y = exp(X₀) + X₁¹ + X₂² + ... + Xₙⁿ + ε + outlier_noise 538

▪ generate_step_data function creates synthetic data where the relationship between the first 539

feature and the output is a step function, and subsequent features contribute polynomially to 540

the output. Gaussian noise is added to the output. The underlying equation can be represented 541

as: 542

y = u(X₀ - 0.5) + X₁¹ + X₂² + ... + Xₙⁿ + ε 543

In this equation, u is the unit step function. 544

▪ generate_complex_interaction_data function generates synthetic data with complex 545

interactions between the features, including polynomial, sinusoidal, and logarithmic 546

interactions. Here, the equation is: 547

y = X₀² + sin(X₁) × log(X₂² + 1) + ε 548

▪ generate_polynomial_data function creates synthetic data where the relationship between the 549

features and the output is defined by high degree polynomials. The underlying equation can be 550

represented as: 551

y = X₀³ + X₁⁴ - X₂⁵ + ε 552

▪ generate_exp_log_data function generates an interaction between an exponential function of 553

the first feature and the natural logarithm of one plus the second feature. The equation for this 554

function is: 555

y = exp(X₀) × log₁p(X₁) + ε 556

▪ generate_sin_exp_data function creates synthetic data where the output is an interaction 557

between a sinusoidal function of the first feature and an exponential function of the second 558

feature. Here, the equation is: 559

y = sin(πX₀) × exp(X₁) + ε 560

▪ generate_tan_data function generates a tangent of the first feature, with subsequent features 561

contributing polynomially to the output. The underlying equation can be represented as: 562

y = tan(X₀) + X₁¹ + X₂² + ... + Xₙⁿ + ε 563

These functions accepts parameters such as: 564

o n_samples for the number of samples 565

o n_features for the number of features 566

o n_informative for the number of informative features, i.e., the features that are useful in 567

predicting the target variable. The remaining features (n_features - n_informative) are 568

generated as random noise. 569

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

18

o noise for the standard deviation of the Gaussian noise applied to the output (dependent 570

variable). 571

o n_targets for the number of regression targets, i.e., the number of dependent variables. By 572

default, this is set to 1, meaning that the generated dataset will have a single target variable. 573

o n_outliers for the number of outliers. 574

o bias for the bias term in the underlying linear model. 575

o shuffle to assign whether or not to shuffle the samples and the features. 576

o effective_rank for the approximate number of singular vectors required to explain most of 577

the input data by a linear, low rank model. If None, all features are informative. This 578

parameter can be used to introduce collinearity in the data. 579

o tail_strength for the relative importance of the fat noisy tail of the singular values profile 580

if effective_rank is not None. 581

o seed to assign seed for the random number generator, to ensure the reproducibility of the 582

results. 583

In all functions, combination of parameters was assigned to create 18 datasets (see Table 3). The 584

amount of noise can be increased or decreased by adjusting the noise_scale parameter. In addition, 585

each function adds a specified number of outliers to the target variable. The outliers are randomly 586

selected from the samples and have a larger amount of normally distributed random noise added 587

to them. 588

Finally, a dictionary named datasets is created to store the generated synthetic datasets. Each 589

dataset has a descriptive name and is generated by one of the previously described functions, with 590

specific parameters. This dictionary allows easy access to each dataset by its name, which is useful 591

when looping through them later to fit and evaluate different ML models. 592

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors Exploration for Regression and Classification.

Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

19

Table 3 Datasets used in the regression analysis on synthetic data. 593

Dataset Function n_samples n_features n_informative n_outliers noise bias shuffle effective_rank tail_strength

Dataset 1 generate_regression_data 50 5 5 - 0.0 0.0 - - -

Dataset 2 generate_regression_data 5000 4 4 - 0.1 0.0 - - -

Dataset 3 generate_regression_data 1000 6 5 - 0.0 10 - - -

Dataset 4 generate_regression_data 7000 2 2 - 0.0 0.0 False - -

Dataset 5 generate_regression_data 750 8 6 - 0.0 0.0 - 5 -

Dataset 6 generate_regression_data 800 4 4 - 0.0 0.0 - - 0.1

Dataset 7 generate_regression_data 1000 5 3 - 0.0 10 - - -

Dataset 8 generate_regression_data 2500 3 2 - 0.0 0.0 False - -

Dataset 9 generate_regression_data 1000 4 4 - 0.9 0.0 - 10 -

Dataset 10 generate_step_data 2000 7 - - 0.0 - - - -

Dataset 11 generate_cubic_data 1000 10 - 20 0.5 - - - -

Dataset 12 generate_synthetic_data 2000 6 - 200 0.8 - - - -

Dataset 13 generate_exponential_data 2000 5 - 40 0.8 - - - -

Dataset 14 generate_tan_data 750 8 - - 0.1 - - - -

Dataset 15 generate_complex_interaction_data 500 7 - - 0.0 - - - -

Dataset 16 generate_polynomial_data 2000 5 - - 0.1 - - - -

Dataset 17 generate_exp_log_data 1000 10 - - 0.5 - - - -

Dataset 18 generate_sin_exp_data 3000 5 - - 0.0 - - - -

594

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

20

.A systematic approach to rank models based on the selected multiple metrics is followed. In this 595

approach, we calculate the average scores for each model across different metrics, assign ranks to 596

the models for each metric, calculate the sum-based rank across all metrics, and display the ranked 597

models. This enables a comparative analysis of models based on their performance across various 598

metrics. The outcome of this analysis is shown in Table 4 as well as Fig. 1. 599

It is quite clear that SPINEX and most of its derivatives rank well in terms of accuracy and the 600

bottom half of the total time for training and prediction. The rankings seem to fall in terms of total 601

time (which also affect the ranking for energy). This is due to the algorithm’s design to check for 602

feature pairs and interactions. 603

Table 4 Ranking results of regression experiment on synthetic data 604

Model MAE R2 Rank Total Time Estimated Energy Rank

StackingSPINEX 1 1 1 15 16 16

CatBoostRegressor 6 2 2 16 14 15

BayesianRidge 3 6 3 4 4 4

HuberRegressor 2 8 4 7 7 7

GradientBoostingRegressor 7 3 4 12 12 12

Ridge 4 7 5 2 1 1

XGBRegressor 8 5 7 9 11 10

RandomForestRegressor 9 4 6 14 15 14

LGBMRegressor 12 9 7 8 8 8

BaggingSPINEX 11 10 8 17 17 17

Lasso 5 17 9 1 2 1

SPINEX 13 11 10 13 13 13

BoostingSPINEX 10 15 11 18 18 18

KNeighborsRegressor 14 12 12 5 5 5

AdaBoostRegressor 15 14 13 10 9 9

SVR 18 13 14 11 10 11

DecisionTreeRegressor 17 16 15 6 6 6

ElasticNet 16 18 16 3 3 3

 605

3.1.2 Classification experiments 606

Similar to the regression counterpart, a number of synthetic datasets for binary classification tasks 607

were generated using the make_classification function from the sklearn.datasets module. The 608

function generate_synthetic_data is defined to create synthetic datasets and accepts the following 609

parameters: 610

o n_samples is the total number of data points in the dataset. 611

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

21

o n_features is the total number of features in the dataset. 612

o n_informative is the number of informative features (i.e., useful for classifying the 613

samples). 614

o n_redundant is the number of redundant features (i.e., generated as random linear 615

combinations of the informative features). 616

o weights is the proportions of samples assigned to each class. 617

o flip_y is the fraction of samples whose classes are randomly exchanged. 618

o class_sep is the factor multiplying the hypercube size, wherein larger values spread out the 619

classes tend to make the classification task easier. 620

The function make_classification generates a random n-class classification problem. It returns X 621

and y, where X is a 2D array of shape n_samples, n_features representing the generated samples, 622

and y is a 1D array of shape n_samples representing the integer labels for class membership of 623

each sample. Overall, 18 datasets were synthetically generated and tested. These were labeled 624

under Series A (see Table 5), and Series B (see Table 5), with varying complexities. 625

A similar systematic approach to rank the ML models based on the selected multiple metrics is 626

followed here as that in the regression analysis. The outcome of this analysis is shown in Tables 6 627

and 7 as well as Figs. 2 and 3. Naturally, most models’ predictions are slightly degraded when 628

evaluated on the datasets belonging to Series B (given their complexity). 629

The outcome of the analysis also shows that SPINEX and its derivatives perform much better in this 630

classification task than in the regression. Overall, and despite its relatively poor ranking under time 631

and energy consumption, the default version of SPINEX consistently ranks in the top 7 in the overall 632

ranking. It is clear that the SPINEX model can outperform some of the more common and traditional 633

algorithms, even in scenarios of imbalanced data and relatively large datasets. 634

Table 6 Ranking results of classification experiment on synthetic data (Series A) 635

Models Accuracy LLE AUC Rank Estimated Energy Total Time Rank

SVC 1 1 1 1 10 15 13

SPINEXClassifier(default) 2 11 2 2 13 9 12

StackingSPINEX 7 2 7 2 14 12 14

BaggingSPINEX 4 7 5 4 15 14 15

KNeighborsClassifier 3 12 3 4 2 2 2

BoostingSPINEX 6 5 6 6 11 5 7

SPINEX 5 6 4 7 12 7 9

LGBMClassifier 8 4 10 8 4 3 3

XGBClassifier 9 3 9 9 6 6 5

RandomForestClassifier 10 8 8 10 8 10 8

GradientBoostingClassifier 11 9 11 11 9 11 10

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

22

AdaBoostClassifier 12 13 12 12 5 8 6

DecisionTreeClassifier 13 14 14 12 3 4 3

LogisticRegression 14 10 13 14 1 1 1

CatBoostClassifier - - - - 7 13 10
*SPINEX = (n_neighbors=20, distance_threshold=0.05, distance_threshold_decay=0.95, ensemble_method=None, metric='manhattan') 636

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

23

Table 5 Datasets used in the classification analysis on synthetic data 637

Dataset
Series A Series B

n_samples n_features n_informative n_redundant n_samples n_features n_informative n_redundant flip_y class_sep weights

Dataset 1 50 3 2 0 50 3 2 0 0.01 1.0 0.9/0.1

Dataset 2 100 10 6 2 100 10 6 2 0.02 0.5 0.8/0.2

Dataset 3 1000 80 20 40 1000 80 20 40 0.03 0.8 0.7/0.3

Dataset 4 500 20 20 0 500 20 20 0 0.04 0.2 0.6/0.4

Dataset 5 5000 40 15 10 5000 40 15 10 0.05 0.3 0.5/0.5

Dataset 6 10000 10 5 5 10000 10 5 5 0.06 0.4 0.6/0.4

Dataset 7 500 20 20 0 1500 100 40 0 0.07 0.5 0.7/0.3

Dataset 8 3000 55 20 20 3000 55 20 20 0.08 0.6 0.8/0.2

Dataset 9 50000 5 3 0 50000 5 3 0 0.09 0.7 0.6/0.4

 638

Table 7 Ranking results of classification experiment on synthetic data (Series B) 639

Models Accuracy LLE AUC Rank
Estimated

Energy
Total Time Rank

SPINEXClassifier(default) 3 1 1 1 13 9 12

StackingSPINEX 2 3 3 2 14 12 14

SPINEX 7 2 2 3 12 7 9

KNeighborsClassifier 4 5 5 4 2 2 2

BaggingSPINEX 6 4 4 4 15 15 15

LogisticRegression 14 6 6 6 1 1 1

RandomForestClassifier 11 8 8 7 9 11 10

DecisionTreeClassifier 15 7 7 8 3 4 3

SVC 1 14 14 8 8 10 8

CatBoostClassifier 8 11 11 10 7 14 11

GradientBoostingClassifier 12 9 9 10 10 13 13

AdaBoostClassifier 13 10 10 12 5 8 6

XGBClassifier 9 12 12 12 6 6 5

BoostingSPINEX 5 15 15 14 11 5 7

LGBMClassifier 10 13 13 15 4 3 3

 640

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

24

3.2 Real datasets 641

Now, we repeat the analysis using a series of real datasets. These datasets are described in the 642

following sections. 643

3.2.1 Regression experiments 644

Here, 12 real datasets are used to benchmark SPINEX and the other ML models. Table 8 lists details 645

on each dataset, along with their respective references. As one can see, the selected datasets 646

comprise a collection of samples and features and cover various problem domains. Further 647

information can be found in each dataset’s reference. 648

Table 8 Datasets used in the regression analysis on synthetic data 649

Dataset n_samples n_features Ref.

University Admission 401 8 [43]

Fire Resistance of RC columns 311 13 [44]

Shear Strength of beams 168 7 [35]

Concrete Strength 1031 9 [45]

Deformation of Beams under Fire 1187 7 [46]

Strength of Steel Tubes 1260 6 [47]

Energy Efficiency of Buildings 767 10 [48]

Body Fat Index 252 15 [49]

Forest Fire Area 517 13 [50]

Abalone Age 2000 10 [51]

Synchronous Motor 557 5 [52]

Walmart Retail 3000 6 [53]

 650

A comparative analysis of models based on their performance across various metrics is presented 651

in Table 9 as well as Fig. 4. The top performing SPINEX derivative ranks 3rd and 4th in terms of 652

accuracy. Other SPINEX derivates also faired well in terms of accuracy metrics (and outperforming 653

some of the common algorithms such as LGBMRegressor, RandomForestRegressor, and 654

GradientBoostingRegressor, but continue to rank at the bottom half due to their large time and 655

energy used. 656

Table 9 Ranking results of regression experiment on synthetic data 657

Model MAE R2 Rank Total Time Estimated Energy Rank

CatBoostRegressor 1 1 1 3 3 2

BaggingSPINEX 8 2 2 14 15 14

SPINEX 4 7 3 13 14 12

LGBMRegressor 9 4 4 4 4 3

RandomForestRegressor 3 10 5 12 12 11

StackingSPINEX 11 3 6 16 16 15

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

25

GradientBoostingRegressor 5 12 7 15 13 13

HuberRegressor 12 6 8 6 6 5

AdaBoostRegressor 13 5 9 8 10 8

XGBRegressor 2 16 10 10 11 10

KNeighborsRegressor 10 11 11 5 5 4

BayesianRidge 14 8 12 1 2 1

Ridge 15 9 13 2 1 1

DecisionTreeRegressor 7 17 14 9 8 7

BoostingSPINEX 6 18 15 18 18 17

Lasso 16 14 16 7 7 6

SVR 18 13 17 17 17 16

ElasticNet 17 15 18 11 9 9

 658

3.2.2 Classification experiments 659

Here, 11 real datasets are used to examine SPINEX and the other ML models as a means for a second 660

means of validation. Table 10 lists details for each used dataset regarding the number of samples 661

and features. Further information can be found in each dataset’s reference. 662

Table 10 Datasets used in the classification analysis on real data 663

Dataset n_samples n_features Ref.

Fire-induced Spalling 1062 16 [54]

Pima Indians Diabetes 768 8 [55]

Bridge Failures 299 7 [56]

Concrete Condition in Situ 9683 8 [57]

Breast Cancer Wisconsin (Original) 569 30 [58,59]

Rice (Commeo and Osmancik) 3810 7 [60]

Bank Note Authentication 1372 4 [61]

Water Potability 2011 9 [62]

Machine Predictive Maintenance 10000 5 [63]

Depression Prediction 1409 20 [64]

Cars Purchase Decision 1000 3 [65]

 664

A look into Table 11 shows that GradientBoostingClassifier and CatBoostClassifier seem to rank 665

constantly among the top two models in terms of accuracy. On the other hand, three versions of 666

SPINEX (namely, StackingSPINEX and SPINEX) land at 6th and 7th in the overall ranking for accuracy. 667

Figure 5 shows that despite the low ranking of SPINEX, this algorithm scored comparable 668

performance to other traditional ML models, such as KNeighborsClassifier, DecisionTreeClassifier, 669

LogisticRegression, and SVC. 670

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

26

Table 11 Ranking results of classification experiment on real data 671

Models Accuracy LLE AUC Rank Estimated Energy Total Time Rank

RandomForestClassifier 3 5 3 1 9 13 9

GradientBoostingClassifier 1 2 2 2 8 12 7

CatBoostClassifier 2 1 1 3 10 15 10

XGBClassifier 5 4 5 3 6 8 5

LGBMClassifier 4 3 4 4 5 6 3

AdaBoostClassifier 6 11 6 5 4 10 5

StackingSPINEX 7 6 7 6 13 9 9

SPINEX 9 10 10 7 11 1 4

DecisionTreeClassifier 8 15 8 8 3 5 2

BoostingSPINEX 11 8 12 9 15 14 11

LogisticRegression 15 12 15 11 2 3 1

BaggingSPINEX 10 9 11 12 14 7 8

KNeighborsClassifier 13 13 9 12 1 4 1

SPINEXClassifier(default) 12 14 13 13 12 2 5

SVC 14 7 14 14 7 11 6
*SPINEX = (n_neighbors=20, distance_threshold=0.05, distance_threshold_decay=0.95, ensemble_method=None, metric='manhattan') 672

3.3 Example with explainability 673

Now, we show one example of the self-interpretability methods included within SPINEX. A sample 674

case of synthetic dataset of 500 sample points and 5 features is presented herein. The results of the 675

comparison in terms of accuracy and total time/energy used are shown in Fig. 6. As one can see, 676

the SPINEX performance is well positioned against the other models. 677

In terms of model explainability, Fig. 7 shows the calculated feature importance as described in 678

Sec. 2.0. Comparatively speaking, the calculated trends of feature importance values seem to 679

parallel that obtained from other models. The same figure also shows plots of other visualizations 680

that can explain model behvaiour. Such visualization includes average interaction effects and 681

feature combination between features. In addition, the pairwise interactions and feature importance 682

at the global level and local level (for a particular instance) are also plotted – please refer to Sec. 683

2 for a detailed description of each of these visualizations. 684

4.0 Conclusions 685

The SPINEX algorithm offers a novel approach for interpretable regression analysis by integrating 686

ensemble learning with feature interaction analysis. It provides accurate predictions while 687

unraveling the complex relationships between features and the target variable. The algorithm's 688

neighbor-based feature importance and interaction effects offer transparent explanations for 689

individual predictions, allowing users to gain insights into the model's decision-making process. It 690

is expected that the performance of SPINEX will improve with further development efforts. 691

 692

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

27

Data Availability 693

Some or all data, models, or code that support the findings of this study are available from the 694

corresponding author upon reasonable request. 695

SPINEX and its derivatives can be accessed from www.mznaser.com, 696

https://pypi.org/project/SPINEX/ and https://github.com/mznaser-clemson/SPINEX. 697

SPINEX can be installed as: 698

pip install SPINEX 699

from SPINEX import SPINEXRegressor 700

from SPINEX import SPINEXClassifer 701

Conflict of Interest 702

The authors declare no conflict of interest. 703

References 704

[1] J. Too, G. Liang, H. Chen, Memory-based Harris hawk optimization with learning agents: 705

a feature selection approach, Eng. Comput. (2022). https://doi.org/10.1007/s00366-021-706

01479-4. 707

[2] I. Naruei, F. Keynia, Wild horse optimizer: a new meta-heuristic algorithm for solving 708

engineering optimization problems, Eng. Comput. (2022). https://doi.org/10.1007/s00366-709

021-01438-z. 710

[3] C. Rudin, Stop explaining black box machine learning models for high stakes decisions and 711

use interpretable models instead, Nat. Mach. Intell. (2019). https://doi.org/10.1038/s42256-712

019-0048-x. 713

[4] W.J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, B. Yu, Definitions, methods, and 714

applications in interpretable machine learning, Proc. Natl. Acad. Sci. U. S. A. (2019). 715

https://doi.org/10.1073/pnas.1900654116. 716

[5] S.N. Van Der Veer, L. Riste, S. Cheraghi-Sohi, D.L. Phipps, M.P. Tully, K. Bozentko, S. 717

Atwood, A. Hubbard, C. Wiper, M. Oswald, N. Peek, Trading off accuracy and 718

explainability in AI decision-making: findings from 2 citizens’ juries, J. Am. Med. 719

Informatics Assoc. (2021). https://doi.org/10.1093/jamia/ocab127. 720

[6] H. Ding, I. Takigawa, H. Mamitsuka, S. Zhu, Similarity-basedmachine learning methods 721

for predicting drug-target interactions: A brief review, Brief. Bioinform. (2013). 722

https://doi.org/10.1093/bib/bbt056. 723

[7] G. Dudek, P. Pełka, Pattern similarity-based machine learning methods for mid-term load 724

forecasting: A comparative study, Appl. Soft Comput. (2021). 725

https://doi.org/10.1016/j.asoc.2021.107223. 726

[8] T. Hofmann, Learning the similarity of documents: An information-geometric approach to 727

document retrieval and categorization, in: Adv. Neural Inf. Process. Syst., 2000. 728

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518
http://www.mznaser.com/
https://pypi.org/project/SPINEX/
https://github.com/mznaser-clemson/SPINEX

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

28

[9] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, Y. Wu, Learning 729

fine-grained image similarity with deep ranking, in: Proc. IEEE Comput. Soc. Conf. 730

Comput. Vis. Pattern Recognit., 2014. https://doi.org/10.1109/CVPR.2014.180. 731

[10] A. Charfi, S. Ammar Bouhamed, E. Bosse, I. Khanfir Kallel, W. Bouchaala, B. Solaiman, 732

N. Derbel, Possibilistic Similarity Measures for Data Science and Machine Learning 733

Applications, IEEE Access. (2020). https://doi.org/10.1109/ACCESS.2020.2979553. 734

[11] T. Widiyaningtyas, I. Hidayah, T.B. Adji, User profile correlation-based similarity 735

(UPCSim) algorithm in movie recommendation system, J. Big Data. (2021). 736

https://doi.org/10.1186/s40537-021-00425-x. 737

[12] F. Fkih, Similarity measures for Collaborative Filtering-based Recommender Systems: 738

Review and experimental comparison, J. King Saud Univ. - Comput. Inf. Sci. (2021). 739

https://doi.org/10.1016/j.jksuci.2021.09.014. 740

[13] P. Domingos, A few useful things to know about machine learning, Commun. ACM. (2012). 741

https://doi.org/10.1145/2347736.2347755. 742

[14] K. Taunk, S. De, S. Verma, A. Swetapadma, A brief review of nearest neighbor algorithm 743

for learning and classification, in: 2019 Int. Conf. Intell. Comput. Control Syst. ICCS 2019, 744

2019. https://doi.org/10.1109/ICCS45141.2019.9065747. 745

[15] S. Dhanabal, S. Chandramathi, A Review of various k-Nearest Neighbor Query Processing 746

Techniques, Int. J. Comput. Appl. (2011). 747

[16] J. Laaksonen, E. Oja, Classification with learning k-nearest neighbors, in: IEEE Int. Conf. 748

Neural Networks - Conf. Proc., 1996. https://doi.org/10.1109/icnn.1996.549118. 749

[17] D. Bera, R. Pratap, B.D. Verma, Dimensionality Reduction for Categorical Data, IEEE 750

Trans. Knowl. Data Eng. (2021). https://doi.org/10.1109/TKDE.2021.3132373. 751

[18] E.Y. Boateng, J. Otoo, D.A. Abaye, Basic Tenets of Classification Algorithms K-Nearest-752

Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review, J. Data 753

Anal. Inf. Process. (2020). https://doi.org/10.4236/jdaip.2020.84020. 754

[19] H.A. Abu Alfeilat, A.B.A. Hassanat, O. Lasassmeh, A.S. Tarawneh, M.B. Alhasanat, H.S. 755

Eyal Salman, V.B.S. Prasath, Effects of Distance Measure Choice on K-Nearest Neighbor 756

Classifier Performance: A Review, Big Data. (2019). 757

https://doi.org/10.1089/big.2018.0175. 758

[20] M.Z. Naser, Machine Learning for Civil and Environmental Engineers: A Practical 759

Approach to Data-Driven Analysis, Explainability, and Causality, Wiley, New Jersey, 2023. 760

[21] Y. Guo, C. Du, Y. Zhao, T.F. Ting, T.A. Rothfus, Two-level K-nearest neighbors approach 761

for invasive plants detection and classification, Appl. Soft Comput. (2021). 762

https://doi.org/10.1016/j.asoc.2021.107523. 763

[22] S.G.K. Patro, B.K. Mishra, S.K. Panda, R. Kumar, H.V. Long, D. Taniar, I. Priyadarshini, 764

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

29

A Hybrid Action-Related K-Nearest Neighbour (HAR-KNN) Approach for 765

Recommendation Systems, IEEE Access. (2020). 766

https://doi.org/10.1109/ACCESS.2020.2994056. 767

[23] Y.M. Wazery, E. Saber, E.H. Houssein, A.A. Ali, E. Amer, An Efficient Slime Mould 768

Algorithm Combined with K-Nearest Neighbor for Medical Classification Tasks, IEEE 769

Access. (2021). https://doi.org/10.1109/ACCESS.2021.3105485. 770

[24] X. Fan, Z. Chen, L. Zhu, Z. Liao, B. Fu, A Novel Hybrid Similarity Calculation Model, Sci. 771

Program. (2017). https://doi.org/10.1155/2017/4379141. 772

[25] J. Gou, L. Du, Y. Zhang, T. Xiong, A new distance-weighted k-nearest neighbor classifier, 773

J. Inf. Comput. Sci. (2012). 774

[26] M. Muja, D.G. Lowe, Scalable nearest neighbor algorithms for high dimensional data, IEEE 775

Trans. Pattern Anal. Mach. Intell. (2014). https://doi.org/10.1109/TPAMI.2014.2321376. 776

[27] M. Aumüller, E. Bernhardsson, A. Faithfull, ANN-Benchmarks: A benchmarking tool for 777

approximate nearest neighbor algorithms, Inf. Syst. (2020). 778

https://doi.org/10.1016/j.is.2019.02.006. 779

[28] Y. Dong, X. Ma, T. Fu, Electrical load forecasting: A deep learning approach based on K-780

nearest neighbors, Appl. Soft Comput. (2021). https://doi.org/10.1016/j.asoc.2020.106900. 781

[29] W. Jiang, Time series classification: nearest neighbor versus deep learning models, SN 782

Appl. Sci. (2020). https://doi.org/10.1007/s42452-020-2506-9. 783

[30] Z. Dang, C. Deng, X. Yang, K. Wei, H. Huang, Nearest neighbor matching for deep 784

clustering, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2021. 785

https://doi.org/10.1109/CVPR46437.2021.01348. 786

[31] L. Ruff, J.R. Kauffmann, R.A. Vandermeulen, G. Montavon, W. Samek, M. Kloft, T.G. 787

Dietterich, K.R. Muller, A Unifying Review of Deep and Shallow Anomaly Detection, 788

Proc. IEEE. (2021). https://doi.org/10.1109/JPROC.2021.3052449. 789

[32] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in 790

vector space, in: 1st Int. Conf. Learn. Represent. ICLR 2013 - Work. Track Proc., 2013. 791

[33] M. Loog, Nearest neighbor-based importance weighting, in: IEEE Int. Work. Mach. Learn. 792

Signal Process. MLSP, 2012. https://doi.org/10.1109/MLSP.2012.6349714. 793

[34] M.Z. Naser, Do We Need Exotic Models? Engineering Metrics to Enable Green Machine 794

Learning from Tackling Accuracy-Energy Trade-offs, J. Clean. Prod. 382 (2023) 135334. 795

https://doi.org/10.1016/J.JCLEPRO.2022.135334. 796

[35] M.Z. Naser, V. Kodur, H.-T. Thai, R. Hawileh, J. Abdalla, V. V. Degtyarev, StructuresNet 797

and FireNet: Benchmarking databases and machine learning algorithms in structural and 798

fire engineering domains, J. Build. Eng. (2021) 102977. 799

https://doi.org/10.1016/J.JOBE.2021.102977. 800

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

30

[36] M. van Smeden, K.G. Moons, J.A. de Groot, G.S. Collins, D.G. Altman, M.J. Eijkemans, 801

J.B. Reitsma, Sample size for binary logistic prediction models: Beyond events per variable 802

criteria:, Https://Doi.Org/10.1177/0962280218784726. 28 (2018) 2455–2474. 803

https://doi.org/10.1177/0962280218784726. 804

[37] R.D. Riley, K.I.E. Snell, J. Ensor, D.L. Burke, F.E. Harrell, K.G.M. Moons, G.S. Collins, 805

Minimum sample size for developing a multivariable prediction model: PART II - binary 806

and time-to-event outcomes, Stat. Med. (2019). https://doi.org/10.1002/sim.7992. 807

[38] I. Frank, R. Todeschini, The data analysis handbook, 1994. 808

https://books.google.com/books?hl=en&lr=&id=SXEpB0H6L3YC&oi=fnd&pg=PP1&ots809

=zfmIRO_XO5&sig=dSX6KJdkuav5zRNxaUdcftGSn2k (accessed June 21, 2019). 810

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 811

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, 812

M. Perrot, E. Duchesnay, É. Duchesnay, E. Duchesnay, Scikit-learn: Machine learning in 813

Python, J. Mach. Learn. Res. 12 (2011) 2825–2830. 814

[40] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model 815

selection, Proc. 14th Int. Jt. Conf. Artif. Intell. - Vol. 2. (1995). 816

[41] T.T. Wong, N.Y. Yang, Dependency Analysis of Accuracy Estimates in k-Fold Cross 817

Validation, IEEE Trans. Knowl. Data Eng. (2017). 818

https://doi.org/10.1109/TKDE.2017.2740926. 819

[42] M.Z. Naser, · Amir, H. Alavi, Error Metrics and Performance Fitness Indicators for 820

Artificial Intelligence and Machine Learning in Engineering and Sciences, Archit. Struct. 821

Constr. 2021. 1 (2021) 1–19. https://doi.org/10.1007/S44150-021-00015-8. 822

[43] A. Khare, Data for Admission in the University, Kaggle. (2022). 823

https://www.kaggle.com/datasets/akshaydattatraykhare/data-for-admission-in-the-824

university. 825

[44] M.Z. Naser, V.K. Kodur, Explainable machine learning using real, synthetic and augmented 826

fire tests to predict fire resistance and spalling of RC columns, Eng. Struct. 253 (2022) 827

113824. https://doi.org/10.1016/j.engstruct.2021.113824. 828

[45] I.-C.C. Yeh, Modeling of strength of high-performance concrete using artificial neural 829

networks, Cem. Concr. Res. 28 (1998) 1797–1808. https://doi.org/10.1016/S0008-830

8846(98)00165-3. 831

[46] M.Z. Naser, AI-based cognitive framework for evaluating response of concrete structures 832

in extreme conditions, Eng. Appl. Artif. Intell. 81 (2019) 437–449. 833

https://www.sciencedirect.com/science/article/pii/S0952197619300466 (accessed April 1, 834

2019). 835

[47] S. Thai, H.-T. Thai, B. Uy, T. Ngo, M.Z. Naser, Test database on concrete-filled steel 836

tubular columns, Mendeley, 2020. https://doi.org/10.17632/3XKNB3SDB5.5. 837

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

31

[48] U. Chowdhury, Energy Efficiency Data Set, Kaggel. (2022). 838

https://www.kaggle.com/datasets/ujjwalchowdhury/energy-efficiency-data-set. 839

[49] Fedesoriano, Body Fat Prediction Dataset, Kaggle2. (2021). 840

https://www.kaggle.com/datasets/fedesoriano/body-fat-prediction-dataset. 841

[50] P. Cortez, A. Morais, Forest Fires Data Set Portugal | Kaggle, (2007). 842

https://www.kaggle.com/datasets/ishandutta/forest-fires-data-set-portugal (accessed July 843

11, 2022). 844

[51] Devphaib, Estimating the age of abalone at a seafood farm, Kaggle. (2022). 845

https://www.kaggle.com/datasets/devzohaib/estimating-the-age-of-abalone-at-a-seafood-846

farm. 847

[52] Fedesoriano, Synchronous Machine Dataset, Kaggle. (2022). 848

https://www.kaggle.com/datasets/fedesoriano/synchronous-machine-dataset. 849

[53] R. Patel, RETAIL ANALYSIS WITH WALMART SALES DATA, Kaggle. (2021). 850

https://www.kaggle.com/datasets/rutuspatel/retail-analysis-with-walmart-sales-data. 851

[54] M.K. al-Bashiti, M.Z. Naser, Verifying domain knowledge and theories on Fire-induced 852

spalling of concrete through eXplainable artificial intelligence, Constr. Build. Mater. 348 853

(2022) 128648. https://doi.org/10.1016/J.CONBUILDMAT.2022.128648. 854

[55] Pima Indians Diabetes Database, Kaggle. (2016). 855

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database. 856

[56] M. Abedi, M.Z. Naser, RAI: Rapid, Autonomous and Intelligent machine learning approach 857

to identify fire-vulnerable bridges, Appl. Soft Comput. (2021). 858

https://doi.org/10.1016/j.asoc.2021.107896. 859

[57] B.A. Young, A. Hall, L. Pilon, P. Gupta, G. Sant, Can the compressive strength of concrete 860

be estimated from knowledge of the mixture proportions?: New insights from statistical 861

analysis and machine learning methods, Cem. Concr. Res. 115 (2019) 379–388. 862

https://doi.org/10.1016/j.cemconres.2018.09.006. 863

[58] W.H. Wolberg, O.L. Mangasarian, Multisurface method of pattern separation for medical 864

diagnosis applied to breast cytology, Proc. Natl. Acad. Sci. U. S. A. (1990). 865

https://doi.org/10.1073/pnas.87.23.9193. 866

[59] W. Wolberg, Breast Cancer Wisconsin (Original) Data Set, UCI Mach. Learn. Repos. (n.d.). 867

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29. 868

[60] M. Koklu, Rice Dataset Commeo and Osmancik, Kaggle. (2022). 869

https://www.kaggle.com/datasets/muratkokludataset/rice-dataset-commeo-and-osmancik. 870

[61] R. Saluja, Bank Note Authentication UCI data, Kaggle. (2018). 871

https://www.kaggle.com/datasets/ritesaluja/bank-note-authentication-uci-data. 872

[62] A. Kadiwal, Water Quality, Kaggle. (2021). 873

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.asoc.2024.111518.

Please cite this paper as:

Naser M.Z., Al-Bashiti M.K., Naser A.Z. (2024). SPINEX: Similarity-based Predictions with Explainable Neighbors

Exploration for Regression and Classification. Applied Soft Computing. https://doi.org/10.1016/j.asoc.2024.111518.

32

https://www.kaggle.com/datasets/adityakadiwal/water-potability. 874

[63] S. Bansal, Machine Predictive Maintenance, Kaggle. (2021). 875

https://www.kaggle.com/datasets/shivamb/machine-predictive-maintenance-classification. 876

[64] D. Babativa, Depression dataset, Kaggle. (2023). 877

https://www.kaggle.com/datasets/diegobabativa/depression. 878

[65] G. Santello, Cars - Purchase Decision Dataset, Kaggle. (2022). 879

https://www.kaggle.com/datasets/gabrielsantello/cars-purchase-decision-dataset. 880

 881

https://doi.org/10.1016/j.asoc.2024.111518
https://doi.org/10.1016/j.asoc.2024.111518

