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Abstract 8 

This paper introduces a new addition to the SPINEX (Similarity-based Predictions with Explainable 9 

Neighbors Exploration) family, tailored specifically for time series and forecasting analysis. This 10 

new algorithm leverages the concept of similarity and higher-order temporal interactions across 11 

multiple time scales to enhance predictive accuracy and interpretability in forecasting. To evaluate 12 

the effectiveness of SPINEX, we present comprehensive benchmarking experiments comparing it 13 

against 18 algorithms and across 49 synthetic and real datasets characterized by varying trends, 14 

seasonality, and noise levels. Our performance assessment focused on forecasting accuracy and 15 

computational efficiency. Our findings reveal that SPINEX consistently ranks among the top 5 16 

performers in forecasting precision and has a superior ability to handle complex temporal 17 

dynamics compared to commonly adopted algorithms. Moreover, the algorithm's explainability 18 

features, Pareto efficiency, and medium complexity (on the order of O(log n)) are demonstrated 19 

through detailed visualizations to enhance the prediction and decision-making process. We note 20 

that integrating similarity-based concepts opens new avenues for research in predictive analytics, 21 

promising more accurate and transparent decision making. 22 

Keywords: Algorithm; Machine learning; Benchmarking; Time series; Forecasting. 23 

1.0 Introduction 24 

Time series analysis involves the study of data collected or recorded sequentially over time to 25 

extract meaningful patterns, trends, and insights [1]. Such a temporal ordering of data distinguishes 26 

time series from cross-sectional data and necessitates specialized techniques to understand the 27 

underlying mechanisms that generate the observed data and to forecast future values based on 28 

historical patterns. In other words, time series analysis inherently focuses on temporal data, with 29 

applications aiming to understand past behaviors, predict future trends, and identify cyclical 30 

patterns as well as anomalies. Such applications can span diverse domains, from financial 31 

forecasting to environmental modeling, etc. [2]. 32 

Given that a core component of time series analysis builds on forecasting future predictions from 33 

past trends/responses, the concept of similarity in time series then arises [3]. Similarity in this 34 

context refers to the degree of resemblance or correspondence between different segments of a 35 

single time series or between multiple time series [4]. The quantification of similarity enables 36 

researchers and practitioners to identify recurring patterns, classify time series into groups with 37 

similar characteristics, and detect deviations from expected behavior. In a way, similarity may 38 
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enable the establishment of a notion of "normal" behavior, which can then help identify instances 39 

that exhibit low similarity to these reference patterns (i.e., anomalies). Thus, the notion of 40 

similarity can be particularly significant in pattern recognition, anomaly detection, and clustering 41 

[5].  42 

In parallel, this concept is not only about finding sequences that look alike but also aims to 43 

understand temporal alignment and variation between data points. For example, two economic 44 

time series might exhibit similar patterns of growth and recession cycles but shift in time or at 45 

different scales. Accurately measuring such similarities involves techniques that consider 46 

alignment and scaling of time data instead of standard distance metrics [6]. This can be apparent 47 

in the case of traditional metrics like Euclidean and Manhattan distances, as these quantify 48 

similarity by measuring the distances between points in a time series. However, these measures 49 

often fall short of capturing the dynamic characteristics of time series data, such as trends and 50 

seasonality [7]. The same measures also tend to be sensitive to small fluctuations, which can be 51 

misleading in a temporal context where trends and cycles play a significant role [8]. 52 

As one can see, unlike static data, where similarity can often be measured using straightforward 53 

distance metrics, time series data presents additional complexities stemming from the observations' 54 

temporal nature. Consequently, specialized similarity measures have been developed to address 55 

these challenges, each with its own strengths and limitations. For instance, Dynamic Time 56 

Warping (DTW) allows elastic transformations of the time [9]. DTW also allows for non-linear 57 

alignment of time series and hence can accommodate differences in speed and duration of patterns. 58 

Thus, DTW can align two sequences in a way that minimizes their overall distance. This method 59 

is particularly effective in dealing with time series that are similar in shape but vary in speed or 60 

timing of events where temporal alignment is fundamental, such as speech recognition and 61 

bioinformatics [10,11]. 62 

Another similarity-based concept is the Longest Common Subsequence (LCSS), which measures 63 

the similarity between two sequences by identifying the longest subsequence present in both 64 

sequences without altering the order of elements [12]. LCSS can be robust to noise and occlusions 65 

and is particularly useful in real-time series applications where missing values may occur. Another 66 

approach to quantifying similarity in time series is through the use of feature-based methods and 67 

correlation measures. The former methods involve extracting relevant features or summary 68 

statistics from the time series and comparing these derived representations rather than the raw data 69 

points, including statistical moments, frequency domain characteristics, and model parameters. 70 

The latter measures, such as Pearson's or Spearman’s correlation coefficients etc., capture the 71 

degree of relationship/association between time series. Both techniques have proven useful yet 72 

may fail to capture non-linear relationships and are sensitive to outliers and phase differences 73 

[13,14]. 74 

More recently, machine learning (ML) advancements have introduced new models for assessing 75 

similarity in time series data. Techniques such as Siamese and triplet networks learn similarity 76 
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metrics directly from data, potentially capturing complex, non-linear relationships that traditional 77 

approaches might miss [15]. Furthermore, methods like K-Nearest Neighbors (KNN) for time 78 

series rely on identifying similar historical patterns to make predictions about future values. More 79 

sophisticated approaches, such as Long Short-Term Memory (LSTM) networks, can now 80 

implicitly learn to recognize and utilize similar patterns in their internal representations [16]. A 81 

key component that remains opaque in ML-based methods is their blackbox nature and limited 82 

interpretability [17].  83 

It can then be inferred that the concept of similarity, as well as explainability, can be thought of as 84 

elemental to forecasting tasks. Thus, this paper presents the development of the time series variant 85 

to the SPINEX (Similarity-based Predictions with Explainable Neighbors Exploration) family. This 86 

variant builds upon the concept of similarity and explainability between similarly-identify 87 

neighbors and segments. As such, SPINEX hopes to bridge some of the existing challenges. In this 88 

study, we examine the algorithm’s ability to perform on 49 diverse datasets compared to 18 89 

commonly used algorithms.  90 

2.0 Description of the SPINEX for time series and forecasting 91 

2.1 General description 92 

SPINEX represents a unique approach to time series analysis and prediction. This algorithm 93 

integrates multiple techniques to deliver robust, adaptive, and interpretable time series forecasting. 94 

For example, at its core, SPINEX employs a multi-method similarity analysis, utilizing various 95 

measures such as cosine similarity, Euclidean distance, DTW, Pearson, and Spearman correlation. 96 

This ensemble approach enables a comprehensive assessment of segment similarities, capturing 97 

diverse aspects of time series behavior. A key feature of SPINEX is its adaptive window sizing 98 

mechanism, which adjusts based on data length, variability, and potential seasonality. This 99 

adaptability allows the algorithm to handle time series of varying lengths and characteristics 100 

effectively. Additionally, SPINEX implements time series cross-validation to provide robust 101 

performance estimates and assess model stability across different time periods.  102 

SPINEX's multi-level analysis capability provides a hierarchical view of time series patterns to 103 

enable robustness to different scales of temporal dependencies. Furthermore, SPINEX incorporates 104 

a dynamic thresholding technique for anomaly detection and forecasting validation. This method 105 

adjusts the similarity threshold based on the recent performance of the predictions and the 106 

distribution of similarity scores, which further enhances the algorithm's flexibility and 107 

responsiveness to changing patterns in the data. The same can be crucial for understanding outliers 108 

and potential regime changes in the data. Thus, SPINEX effectively identifies the most relevant 109 

segments for making predictions to improve the reliability of the forecast. In cases where 110 

accessible similarity-based prediction is not feasible, the algorithm switches to a fallback 111 

prediction method, which includes trend extraction, multiple seasonality detection, non-linear 112 

trend modeling, and anomaly-aware residual prediction with confidence intervals. 113 
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As mentioned above, SPINEX focuses on explainability by offering detailed results on the most 114 

similar historical segments, their contributions to the prediction, and visualizations of the nearest 115 

neighboring similar segments. This enhances understanding of the prediction process and the 116 

underlying patterns in the data. Computational efficiency within SPINEX is achieved through the 117 

use of techniques like numba for just-in-time compilation and caching mechanisms. For 118 

completion, a representative pseudo-code is provided below. 119 

Input: 120 

    data: Time series data 121 

    window_size (optional): Length of each segment 122 

    forecast_horizon: Number of future steps to predict 123 

    similarity_methods: List of similarity methods (e.g., 'cosine', 'euclidean', 'dtw', etc.)  124 

    dynamic_window: Flag to enable adaptive window sizing 125 

    multi_level: Flag to enable multi-level similarity analysis 126 

    dynamic_threshold: Flag to enable dynamic threshold adjustments 127 

O utput: 128 

    Predicted future values of the time series 129 

    Identified anomalies (if applicable) 130 

    Explainability insights for predictions 131 

Pr ocedur e: 132 

1. In itial ization : 133 

    - Convert `data` to a numpy array. 134 

    - Set `window_size` to default or provided value. 135 

    - Set default similarity methods and initialize caches. 136 

2. Dynamic  Par ameter  Adjustment ( i f  `dynamic_ window` or  `dynamic_ thr eshold`  is enabled):  137 

    - Calculate volatility or variability in recent data. 138 

    - Adjust `window_size` based on variability and predefined bounds. 139 

    - Calculate dynamic threshold for similarity scores based on recent errors and scores. 140 

3. Segment Extr action: 141 

    - Slide a window of size `window_size` across the data to extract overlapping segments. 142 

    - Normalize each segment (mean = 0, std = 1). 143 

4. Similar ity  Matr ix Calculation:  144 

    - For each specified similarity method: 145 

        - Compute pairwise similarity scores between segments using: 146 

            - Cosine similarity 147 

            - Euclidean similarity 148 

            - DTW (Dynamic Time Warping) 149 

            - Other specified methods 150 

        - Cache results for reuse. 151 

5. Find Similar  Segments : 152 

    - Evaluate similarity scores for segments using all methods. 153 

    - Combine results across methods to compute an overall similarity score. 154 

6. Pr edic tion: 155 

    - Identify top similar segments based on overall similarity score. 156 

    - Use weights derived from similarity scores to combine predictions. 157 

    - If no valid predictions are possible, use a fallback method (e.g., seasonal decomposition or trend modeling).  158 

7. Anomaly Detection (O ptional):  159 
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    - Define a threshold for similarity scores (dynamic or static). 160 

    - Identify segments with scores below the threshold as anomalies. 161 

8. Explainabi l ity  Analysis (O ptional):  162 

    - Analyze contributions of features to similarity scores. 163 

    - Identify top-contributing features for each similar segment. 164 

    - Compute weighted contributions of segments to predictions. 165 

9. Evaluation: 166 

    - Evaluate prediction accuracy using metrics such as MSE, RMSE, MAE, R², etc. 167 

    - Validate predictions across multiple train-test splits if required. 168 

10. Visual ization (O ptional):  169 

    - Plot predictions alongside actual time series data. 170 

- Highlight anomalies or visualize top similar segments and their contributions. 171 

End Algor ithm 172 

2.2 Detailed description 173 

A more detailed description of SPINEX’s methods and functions is provided herein. It is worth 174 

noting that the presented default settings were arrived at from an empirical analysis of the 49 175 

datasets examined in this paper (obtained from synthetic and real datasets).  176 

Initia l ization (__init__)  177 

The __init__ method initializes and sets up the operational parameters of SPINEX. The method 178 

signature is as follows: 179 

    def __init__(self, data, window_size=None, forecast_horizon=1, similarity_methods=None, 180 

                dynamic_window=True, multi_level=True, dynamic_threshold=True): 181 

More specifically: 182 

• data: The input time series data, converted into a NumPy array for efficient numerical operations. 183 

• window_size: Determines the length of the segments to be compared. If not specified, it is set to the greater  184 

of 10 or one-tenth of the data length. This parameter can be dynamically adjusted based on the data's 185 

volatility. 186 

• for ecast_ hor izon: Specifies how far into the future predictions are made. By default, it is the smaller of the 187 

provided value and one-tenth of the data length. 188 

• similarity_ methods: A list of methods used to compute similarity between segments. Defaults to ['cosine', 189 

'euclidean', 'dtw'] if not specified. 190 

• dynamic_window: Enables or disables dynamic adjustment of the window size based on data characteristics. 191 

• multi_ level: Allows the use of multiple window sizes in the analysis to capture different scales of patterns. 192 

• dynamic_threshold: Enables adaptive thresholding in the similarity calculations to improve forecast 193 

reliability. 194 

• Additionally, the class uses caching mechanisms (similarity_cache and segments_cache) to store computed 195 

results for re-use to optimize performance for large datasets. 196 

Method: Simi lar ity Measures 197 

This method offers several methods to compute the similarity between time series segments: 198 

• Cosine Similar ity : 199 
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o Computes the cosine of the angle between two vectors and is defined as the dot product of the 200 

vectors divided by the product of their norms. This measure is effective in identifying the 201 

similarity in direction regardless of magnitude. 202 

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑋⋅𝑋𝑇

∥𝑋∥∥𝑋𝑇 ∥
 203 

• Cor r elation Similar ity : 204 

o Calculates the Pearson correlation coefficient matrix of the rows of X, providing a measure of 205 

linear relationships between segments. 206 

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = corrcoef(X)  207 

• Euc l idean Similar ity : 208 

o Uses the Euclidean distance to compute similarity by applying a transformation that inversely 209 

relates distance to similarity. 210 

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
1

1+√𝑐𝑑𝑖𝑠𝑡 (𝑋,𝑋,Euclidean)2 
 211 

• Spear man Similar ity : 212 

o Calculates the Spearman rank correlation between the columns of X, useful for capturing 213 

monotonic relationships between segments that may not necessarily be linear. 214 

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = spearmanr (𝑋𝑇 )[0]  215 

• Dynamic  Time War ping (DTW) Similar ity :  216 

o Measures similarity based on the minimal distance that aligns two time series, accounting for 217 

shifts and distortions in time. In essence, DTW measures the similarity between two temporal  218 

sequences, which may not be of the same length, by aligning their points to minimize the overall 219 

distance between them. 220 

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
1

1+𝐷𝑇𝑊 (𝑋[𝑖],𝑋[𝑗])
  221 

▪ 𝐷𝑇𝑊 (𝑥, 𝑦) = min(cost +  min(dtw𝑚𝑎𝑡𝑟𝑖𝑥 [𝑖 − 1, 𝑗], dtw𝑚𝑎𝑡𝑟𝑖𝑥 [𝑖, 𝑗 −222 

1], dtw𝑚𝑎𝑡𝑟𝑖𝑥 [𝑖 − 1, 𝑗 − 1]) 223 

• Dir ection Similar ity : 224 

o Calculates the direction similarity via the direction method to be discussed later on. 225 

Method: adjust_dynamic_parameters 226 

This method adjusts the window size and similarity threshold based on the recent behavior of the 227 

time series and the algorithm's performance. 228 

• Volati l i ty -based Window Size Adjustment:  229 

o Volatility Calculation: First, this method calculates the volatility of the most recent portion of 230 

the data, defined as the standard deviation over the last data segments. The size of this 231 

segment is a maximum of 10 or one-tenth of the data length but not exceeding half the length 232 

of the data. 233 

o Window Size Recalculation: The window size is inversely adjusted based on the calculated 234 

volatility to respond to the data’s fluctuating nature. If the volatility is low, a larger window size 235 

is used to smooth out noise and capture more extended patterns. If the volatility is high, the 236 

window size decreases, making the model more responsive to recent changes. A scaling factor 237 

controls this adjustment, clipped between 0.1 and 1.0 to prevent extreme values. 238 

o Equation:𝑤𝑖𝑛𝑑𝑜𝑤 _𝑠𝑖𝑧𝑒 =239 

𝑚𝑎𝑥 (𝑀𝐼𝑁_𝑊𝐼𝑁𝐷𝑂𝑊 _𝑆𝐼𝑍𝐸, 𝑚𝑖𝑛 (
𝑀𝐴𝑋_𝑊𝐼𝑁𝐷𝑂𝑊 _𝑆𝐼𝑍𝐸

𝑠𝑐𝑎𝑙𝑒 _𝑓𝑎𝑐𝑡𝑜𝑟
, 𝑀𝐴𝑋 _𝑊𝐼𝑁𝐷𝑂𝑊_𝑆𝐼𝑍𝐸)) 240 

▪ where scale_factor=clip(volatility,0.1,1.0). 241 

• Thr eshold Adjustment: 242 
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o Er r or-based Adjustment: If recent prediction errors are available, the threshold is adjusted 243 

based on these errors' mean and standard deviation to accommodate the model’s predictive 244 

accuracy. 245 

o Similarity Score-based Adjustment: If recent similarity scores are tracked, the threshold is 246 

further adjusted to reflect the mean and variability in these scores. This dynamic threshold 247 

helps maintain the similarity measure's relevance under varying data conditions. 248 

o Equation: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑒𝑎𝑛_𝑠𝑖𝑚 + 𝑠𝑡𝑑 _𝑠𝑖𝑚 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 _𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡  249 

Method: get_dynamic_threshold 250 

This method computes an adaptive threshold for the similarity scores to decide which time series 251 

segments are considered similar enough to be relevant for predictions. 252 

• Basic Threshold Calculation: Calculates a baseline threshold as the sum of the mean and standard deviation 253 

of the similarity scores. This method aims to keep only the most similar segments, thus ensuring that the 254 

predictions are based on the most relevant and recent data patterns. 255 

• Thr eshold Adjustment: If fewer than five segments exceed this baseline threshold, indicating a potential 256 

over-tightening, the threshold is reduced to the 90th percentile of the scores to include more segments. 257 

o Equation:𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =258 

{
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 ,  90) 𝑖𝑓 𝑎𝑏𝑠{𝑠 > 𝑏𝑎𝑠𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} < 5

𝑏𝑎𝑠𝑒 _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 259 

 260 

Method: adjusted_dtw_similar ity 261 

This method modifies the DTW similarity measure to be more forgiving by squaring the DTW 262 

distance before inversely transforming it into a similarity score. This adjustment makes the 263 

similarity measure less sensitive to small variations, emphasizing more significant patterns in the 264 

similarity assessment. 265 

o Equation: 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 _𝑠𝑐𝑜𝑟𝑒𝑠  = 
1

1+√𝑑𝑡𝑤_𝑠𝑐𝑜𝑟𝑒𝑠
 266 

Method: plot_prediction 267 

This method is designed to visualize the forecasting performance of the SPINEX model by plotting 268 

actual data alongside predicted values. This method serves as a tool for assessing the accuracy and 269 

relevance of the model's predictions. 270 

Method: extract_segments 271 

This method prepares segments of the time series data for further analysis, such as computing 272 

similarities or making predictions such that: 273 

• Dynamic Window Size: If no specific window size is provided, the method calculates an adaptive window 274 

size using the adaptive_window_size() method. 275 

• Adjustment for Small Data: If the total data length is less than the determined window size, the window size 276 

is adjusted to half the data length to ensure at least some segmentation can be performed. 277 

• Segmentation: Using np.lib.stride_tricks.sliding_window_view, the method creates overlapping segments 278 

of the specified window size from the time series data. This function efficiently generates a new view into 279 

the data array without copying the data. 280 
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• Nor malization: Each segment is normalized by subtracting its mean and dividing by its standard deviation. 281 

This step standardizes the segments, mitigating the effect of different scales or baselines in the data and 282 

improving the comparability between segments. 283 

o Equation: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 _𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 =  
𝑠𝑒𝑔𝑚𝑒 𝑛𝑡𝑠−𝑠𝑒𝑔𝑚𝑒𝑛𝑡 _𝑚𝑒𝑎𝑛𝑠

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 _𝑠𝑡𝑑𝑠+1𝑒 −8
 284 

o Here, 1e−8 is added to the standard deviations to prevent division by zero in the case of very 285 

uniform segments. 286 

Method: find_similar_segments 287 

This method facilitates the identification of similar segments within the time series data, which is 288 

crucial for making accurate predictions. 289 

• Multi-Level Analysis: Depending on the multi_level attribute, the method considers multiple window sizes 290 

for segmentation. These sizes include a smaller window (half the primary size), the primary window size 291 

itself, and a larger window (double the primary size or one-fourth the length of the data, whichever is 292 

smaller). This multi-scale approach allows the model to capture similarities at different granularities. 293 

• Segment Extraction and Hashing:  For each window size, the method extracts segments and computes a 294 

hash to uniquely identify them. This hash is used to cache the segments and avoid redundant calculations.  295 

• Similarity Calculation: For each window size, the method computes similarity matrices using the specified 296 

methods (cosine, euclidean, dtw, etc.). If a large number of segments are detected (more than 500), DTW 297 

is skipped to avoid performance bottlenecks. 298 

• Aggr egation of Similar ities: The method averages the similarities across different methods to get a 299 

composite similarity measure for each window size. These are then averaged across all window sizes to 300 

get the final measure of similarity between segments. 301 

• Fal lback Method: If no valid similarities are found (e.g., due to insufficient segments or errors in 302 

calculation), a fallback method based on autocorrelation is used. 303 

Method: fal lback_similar ity_method 304 

This method provides a basic mechanism to calculate similarity based on autocorrelation when 305 

other methods fail or are not applicable due to data constraints. 306 

Method: analyze_segment_similar ity  307 

This method quantitatively assesses how similar a particular segment (indexed) is to the most 308 

recent segment in the time series. 309 

• Segment Extraction: Both the target segment and a reference segment (usually the most recent one) are 310 

extracted. 311 

• Similarity Calculation: The method calculates similarity scores using all available similarity methods, 312 

providing a detailed breakdown of how each method perceives the similarity. 313 

• Feature Contributions: It calculates the absolute differences between the corresponding features of the 314 

two segments to determine which features contribute most to any dissimilarity. 315 

Method: get_nearest_neighbors 316 

This method identifies the nearest neighbors of the most recent segment based on the computed 317 

similarities and can identify tasks for anomaly detection. After calculating similarities for all 318 

segments, it sorts these and picks the top k segments most similar to the latest segment, providing 319 

their indices and similarity scores. 320 
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Method: detect_seasonal ity 321 

This method is designed to identify seasonality within the time series data, which is crucial for 322 

understanding periodic patterns that could influence forecasting and other analytical tasks. 323 

• Autocorrelation Calculation: The method calculates the autocorrelation (ACF) for the data up to a specified 324 

lag (max_lag). If max_lag is not specified, it defaults to half the length of the data. 325 

• Peak Detection: The method then identifies ACF peaks, representing potential seasonal periods. Peaks are 326 

detected where the autocorrelation at a given lag is greater than its neighbors, indicating a repeating pattern.  327 

• Seasonality Infer ence: If any peaks are detected, the first peak is assumed to represent the primary seasonal 328 

period, and its lag is returned. An empty list is returned if no peaks are detected, indicating no detectable 329 

seasonality. 330 

Method: detect_anomalies 331 

This method identifies anomalies in the time series data by comparing the similarity of data 332 

segments to a dynamically determined threshold. 333 

• Segment Extraction and Similarity Calculation:  Segments of the data are extracted, and their similarities are 334 

computed. 335 

• Thr eshold Determination: A threshold is set at a specified percentile (default is the 2nd percentile) of the 336 

similarity scores, identifying the least similar segments as potential anomalies. 337 

• Anomaly Identification: Segments whose similarity scores fall below the threshold are marked as anomalies. 338 

• Equation: 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 ,  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 _𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 ) 339 

Method: fal lback_prediction 340 

This method provides a comprehensive mechanism for generating predictions when standard 341 

approaches are not feasible, utilizing multiple time series decomposition and modeling techniques. 342 

• Pr e-checks: It first ensures that there is sufficient data for prediction based on the specified number of points 343 

required. 344 

• Adaptive Window Sizing: This step dynamically adjusts the window size for trend extraction based on 345 

minimizing the mean squared error (MSE) of the trend-subtracted data. 346 

• Tr end Extr action: Utilizes a moving average to smooth the data and extract the underlying trend. 347 

• Seasonality Detection: Employs autocorrelation to identify potential seasonality periods and extract these 348 

seasonal components. 349 

• Residual Calculation: The residuals (or unexplained components) are analyzed after removing the trend and 350 

seasonal components. 351 

• Anomaly Detection and Handling:  Anomalies in the residuals are identified and replaced with median values 352 

to stabilize the model. 353 

• Non-l inear  Tr end Modeling: Fits a polynomial model to predict the future trend based on past data. 354 

• Seasonal Component Pr edic tion:  Projects the identified seasonal patterns into the future. 355 

• Residual Prediction: Uses a weighted average approach to predict future residuals, incorporating confidence 356 

intervals to account for uncertainty. 357 

• Combination of Components:  The final prediction combines the trend, seasonal, and residual predictions to 358 

form a complete forecast. 359 

• Tr end: Extracted using a moving average filtered by convolution:  360 

o Equation: 𝑡𝑟𝑒𝑛𝑑  = 𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒 (𝑑𝑎𝑡𝑎, 𝑤𝑖𝑛𝑑𝑜𝑤 )/𝑤𝑖𝑛𝑑𝑜𝑤 _𝑠𝑖𝑧𝑒 361 

• Seasonality : Identified through peak detection in the autocorrelation function. 362 

• Residuals: Calculated as data − trend 363 
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• Confidence Intervals for Residuals:  Generated by assuming the residuals follow a normal distribution 364 

modulated by an exponential decay in influence. 365 

Method: tune_hyperparameters 366 

This method optimizes the hyperparameters of the model, specifically focusing on the detection of 367 

seasonalities. 368 

• Iter ative Testing: The method iterates over a range of possible numbers of seasonalities to detect (from 1 to 369 

4). 370 

• Pr ediction Generation : For each candidate setting, it generates predictions using the fallback_prediction 371 

method. 372 

• Evaluation : Calculates the MSE for each set of predictions compared to the actual data. 373 

• Selection of O ptimal Par ameter : Identifies the number of seasonalities that result in the lowest MSE, 374 

suggesting the best fit for the data. 375 

Method: predict 376 

This method combines various techniques to generate accurate forecasts based on the similarity of 377 

time series segments. 378 

• Dynamic Parameter Adjustment: Initially, dynamic parameters such as window size and thresholds are 379 

adjusted based on recent data characteristics. 380 

• Similarity  Assessment: It calculates similarities between segments of the time series to identify patterns that 381 

can be used for forecasting. 382 

• Fal lback Prediction: If no significant similarities are found, it resorts to a fallback prediction method that uses 383 

more basic statistical methods. 384 

• Thr eshold Determination : Determines a dynamic threshold for considering a segment significantly similar to 385 

the latest data, adjusting the threshold based on the distribution of similarity scores. 386 

• Valid Predictions Identif ication : Identifies segments that meet the similarity threshold and ensures that they 387 

are within a valid range for making predictions. 388 

• Pr ediction Compilation : Compiles predictions from multiple segments, weighted by their similarity scores, 389 

and adjusts them to align with the most recent actual data point. 390 

• Er r or  Handling: If any step fails, it defaults to the fallback prediction method. 391 

Method: update_recent_performance  392 

This method updates the performance metrics of the model by recording the recent error and 393 

similarity scores, which are essential for monitoring and improving the model's accuracy over 394 

time. 395 

• Dynamic Parameter Adjustment: Initially, dynamic parameters such as window size and thresholds are 396 

adjusted based on recent data characteristics. 397 

• Similarity  Assessment: It calculates similarities between segments of the time series to identify patterns that 398 

can be used for forecasting. 399 

Method: val idate_prediction 400 

This method evaluates the robustness of the model’s predictions by using cross-validation, 401 

specifically time-series cross-validation, where the order of data points is preserved. 402 

• Setup: Determines the number of splits for cross-validation based on available data, ensuring there are 403 

enough points for each training and testing set. 404 
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• Cr oss-Val idation: 405 

o Single Split Handling: If there is insufficient data for multiple splits, perform a single train -test split. 406 

o Multiple Splits: Uses TimeSeriesSplit from scikit-learn to create training and testing segments. It 407 

ensures that predictions are based only on past data, respecting the temporal order. 408 

o Prediction and Evaluation: For each split, the model predicts future values based on the training set, 409 

and the predictions are evaluated using the evaluate_prediction method. 410 

o Aggregation of Results: The results from each split are aggregated to calculate average performance 411 

metrics across all splits. 412 

Method: get_explainabi l i ty_results  413 

This method provides insights into why certain predictions were made based on the similarity of 414 

time series segments.  415 

• Similarity Assessment: The method first identifies similar segments by calculating and evaluating segment 416 

similarities. 417 

• Thr eshold Determination: It dynamically determines a similarity threshold above which segments are 418 

considered significantly similar. 419 

• Top Segments Identification: Segments surpassing the threshold are marked as key influencers. If no 420 

segments exceed the threshold, the top k segments based on similarity scores are selected. 421 

• Contribution Calculation: Each top segment calculates how much each segment contributes to the 422 

predictions, using weighted averages based on their similarity scores. 423 

Method: analyze_and_plot_neighbors 424 

This provides a deeper analysis of how and why certain segments are considered similar to the 425 

current segment, offering both visual and numerical insights.  426 

• Current and Neighbor Segment Extraction:  Similar to plot_nearest_neighbors, but with added analysis of 427 

segment similarities. 428 

• Similar ity  Analysis: For each neighbor, it computes detailed similarity scores using various metrics. 429 

• Visualization and Reporting: Each neighbor's segment and its similarity scores are plotted and displayed. This 430 

includes a breakdown of the scores for different similarity metrics and the identification of key features 431 

contributing to the similarities. 432 

• Similarity  Scor es: Each neighbor's similarity to the current segment is quantified using methods like cosine, 433 

euclidean, and DTW similarities. 434 

• Feature Contr ibutions: Differences between segments are analyzed to pinpoint which specific elements (data 435 

points) contribute most to the observed similarities or discrepancies. 436 

Additional functions for optimized clustering: 437 

Method: direction_accuracy 438 

This method calculates the direction accuracy to compare the directional trends between two time 439 

series segments. Given two segments, segment1 and segment2, the following steps compute the 440 

direction accuracy:  441 

• Calculate the Differ ences: compute the first-order differences of both segments such that: 442 

o Equation:𝐷𝑖𝑓𝑓 1𝑖 = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 1𝑖+1 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡1𝑖  (with a similar approach for segment 2) 443 

• Determine the Direction : Using the sign function sign(⋅), the direction of these differences can be calculated. 444 

• Equation : 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 1𝑖 = 𝑠𝑖𝑔𝑛(𝐷𝑖𝑓𝑓1𝑖 ) (with a similar approach for segment 2) 445 



This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.  

 

Please cite this paper as:  

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors 

exploration for time series and forecasting problems. Computers & Industrial 

Engineering. https://doi.org/10.1016/j.cie.2024.110812. 

 

12 

 

• Compare Directions: Compare the directional trends of the two segments by checking if the directions are 446 

equal at each time step 447 

o Equation: 𝑚𝑎𝑡𝑐ℎ  = {1 𝑖𝑓 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 1𝑖 = 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 2𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 448 

Method: Entropy 449 

The numba_sample_entropy method calculates the sample entropy of a sequence x, which is a 450 

measure of the complexity or the amount of regularity and unpredictability in time series data. 451 

This entropy is useful for determining the complexity of physiological time series signals. 452 

• Mathematical  Repr esentation : 453 

o 𝑆𝑎𝑚𝑝𝑙𝑒  𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − 𝑙𝑜𝑔 
𝐴 +1𝑒−10

𝐵+1𝑒−10
 454 

 455 

Method: Hash Array (hash_array)  456 

This static method generates a unique hash for a numpy array using MD5 to create keys for caching 457 

purposes, allowing efficient retrieval of previously computed results. 458 

Method: plot_anomalies 459 

This method visualizes the anomalies detected. 460 

Method: plot_nearest_neighbors 461 

This method visualizes the time series segments that are most similar to the most recent segment, 462 

facilitating an understanding of the model's decision-making process. 463 

3.0 Description of benchmarking algorithms  464 

We examined SPINEX against 18 commonly used time series forecasting algorithms, namely, 465 

ARIMA, SARIMA, ETS, Holt-Winters, Prophet, Theta, Simple Moving Average, VAR, Croston's 466 

Method, LSTM, Neural Networks, Gaussian Process Regression, KNN, SVR, Random Forest, 467 

XGBoost, Gradient Boosting, CatBoost, and Bagging. As one can see, the first nine algorithms are 468 

specifically designed for time series analysis, while the latter group consists of other ML 469 

algorithms that can be adapted for time series forecasting with appropriate feature engineering, as 470 

seen in [8,18–20]. Each of these algorithms is described in this section, where we showcase a brief 471 

historical background and algorithmic logic (with additional details being available in the cited 472 

original sources). Table 1 compares these algorithms with respect to their time series forecasting 473 

characteristics.  474 

3.1 Algorithms specifically designed for time series analysis  475 

3.1.1 Autoregressive Integrated Moving Average (ARIMA and SARIMA) 476 

ARIMA (Autoregressive Integrated Moving Average) and its seasonal variant SARIMA were 477 

popularized by Box and Jenkins in the 1970s [21] – however, the concepts of Auto-Regressive and 478 

Moving Average models were introduced by Yule in 1926 and by Slutsky in 1937, respectively 479 

[22]. The ARIMA algorithm combines these concepts and components with differencing to handle 480 

non-stationary data. The ARIMA algorithm is particularly effective for univariate time series 481 
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forecasting, while SARIMA extends this capability to series with seasonal patterns. The models 482 

are specified by three main parameters: p (order of the Auto-Regressive term), d (degree of 483 

differencing), and q (order of the Moving Average term), and SARIMA adds additional seasonal 484 

parameters. These algorithms are widely used due to their flexibility and ability to capture complex 485 

temporal dependencies. However, the algorithms assume linear relationships and, hence, may 486 

struggle with highly nonlinear patterns. Moreover, the selection of appropriate internal parameters 487 

can be challenging and often requires expert/domain knowledge or automated procedures [23]. 488 

3.1.2 Croston's Method 489 

Croston introduced this method in 1972 [24] as a specialized forecasting algorithm designed for 490 

intermittent demand patterns. This algorithm separates the time series into two components: the 491 

non-zero demand sizes and the intervals between non-zero demands. Each component is then 492 

forecasted separately using simple exponential smoothing, and the final forecast is obtained by 493 

dividing the demand size forecast by the interval forecast. This method is particularly useful in 494 

domains where demand occurs sporadically (such as that commonly seen in inventory 495 

management and spare parts forecasting) [25]. Croston's method assumes that the demand sizes 496 

and intervals are independent (which often introduces bias as this assumption may not always hold 497 

true). Several modifications of Croston's method have been proposed to address this main 498 

limitation [26,27]. 499 

3.1.3 Error, Trend, Seasonality (ETS), and the Holt-Winters Method 500 

ETS (Error, Trend, Seasonality) and Holt-Winters methods are exponential smoothing techniques 501 

that have evolved since their introduction by Brown and Holt in the 1950s [28,29]. These two 502 

methods decompose time series into components (level, trend, and seasonality) and use weighted 503 

averages of past observations to forecast future values. ETS provides a framework for selecting 504 

the most appropriate model based on the nature of the components (i.e., additive or multiplicative). 505 

Holt-Winters [30] is a specific implementation within the ETS family that has been modified to 506 

account for time series with both trend and seasonal components. This family of algorithms can 507 

be effective in handling a wide range of time series patterns. However, these algorithms may 508 

struggle with complex, non-linear relationships and can be sensitive to outliers [31].  509 

3.1.4 Long Short-Term Memory (LSTM) 510 

The Long Short-Term Memory (LSTM) network was introduced by Hochreiter and Schmidhuber 511 

in 1997 [32] as a type of recurrent neural network. This network is designed to capture long-term 512 

dependencies in sequential data. LSTMs use a series of gates (input, forget, and output gates) to 513 

control the flow of information through the network, allowing them to selectively remember or 514 

forget information over long sequences. This architecture makes LSTMs particularly well-suited 515 

for time series forecasting, especially when dealing with complex, non-linear patterns and long-516 

term dependencies. LSTMs can handle multivariate time series and can learn from historical data. 517 

However, they often require substantial training data to perform well, can be computationally 518 

intensive, and may be prone to overfitting if not properly regularized. Moreover, LSTM is a 519 

blackbox algorithm and can be challenging to interpret [33]. 520 
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3.1.5 Prophet 521 

Prophet, developed by Meta (Facebook formally) in 2017 [34]. This algorithm offers a procedure 522 

for forecasting time series data based on an additive model that decomposes the time series into 523 

trend, seasonality, and holiday components. Prophet is designed to handle daily observations with 524 

at least one year of historical data and can accommodate missing values and outliers. The algorithm 525 

automatically detects changepoints in the trend and allows for user-specified changepoints. A key 526 

advantage of this algorithm is its ability to handle multiple seasonalities and incorporate domain 527 

knowledge through easily interpretable parameters. Prophet is particularly effective for forecasting 528 

tasks with strong seasonal effects (as well as those with several seasons of historical data). Yet, 529 

this algorithm may struggle with short-term forecasts or datasets with limited historical data. 530 

Additionally, while it is designed to be robust, it may not always capture complex, non-linear 531 

patterns effectively [35]. 532 

3.1.6 Simple Moving Average (SMA) 533 

The Simple Moving Average (SMA) is a basic and widely used time series forecasting method. 534 

The origin of SMA can be traced back to the early days of technical and inventory analysis [36]. 535 

This method calculates the arithmetic mean of a set of values over a specific number of time 536 

periods and is often used to smooth out short-term fluctuations and highlight longer-term trends 537 

or cycles, and can be effective for short-term forecasting in stable time series with minimal trend 538 

or seasonality. However, SMA has several limitations. This method can produce lags behind the 539 

most recent data points and may miss sudden changes or turning points. SMA also gives equal 540 

weight to all observations within the moving window, which may not be ideal if more recent 541 

observations are believed to be more relevant. Despite such limitations, SMA remains a useful tool 542 

for forecasting methods [37]. 543 

3.1.7 Theta Method 544 

The Theta algorithm was proposed by Assimakopoulos and Nikolopoulos in 2000 [38]. This 545 

algorithm decomposes the time series into two "theta lines." The first line represents the long-term 546 

trend, and the other captures short-term behavior. These lines are then extrapolated separately and 547 

combined to produce the final forecast. The Theta method is praised for its simplicity and 548 

effectiveness, especially for seasonal time series. The Theta algorithm often performs well without 549 

requiring extensive parameter tuning, making it accessible for practitioners. However, the method 550 

assumes that the time series can be well-represented via decomposition into two lines (which may 551 

not always hold true for complex, non-linear time series). Moreover, it may struggle with abrupt 552 

changes or structural breaks in the data [39]. 553 

3.1.8 Vector Autoregression (VAR) 554 

Vector Autoregression (VAR), introduced by Sims in 1980 [40], is a multivariate forecasting 555 

technique that extends the univariate autoregressive model to capture the linear interdependencies 556 

among multiple time series. In VAR, each variable is a linear function of past lags of itself and 557 

past lags of the other variables. This methodology makes VAR particularly useful for 558 

understanding the relationships between multiple related time series and generating forecasts for 559 
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these interactions. VAR models are widely used in econometrics and financial time series 560 

forecasting as they can model feedback effects and provide insights into the dynamics between 561 

variables through tools like impulse response functions [41]. However, VAR models assume linear 562 

relationships between variables and can become overparameterized when dealing with many 563 

variables or long lag structures. This could potentially lead to poor forecasts [42]. 564 

3.2 ML algorithms adapted for time series forecasting 565 

3.2.1 Gaussian Process Regression (GPR) 566 

Gaussian Process Regression (GPR) is a non-parametric probabilistic approach to regression and 567 

time series forecasting that is rooted in Bayesian statistics. This algorithm was formalized for ML 568 

applications by Rasmussen and Williams [43]. The method models the target variable as a 569 

Gaussian process, assuming that any finite collection of data points has a multivariate Gaussian 570 

distribution. GPR is particularly valuable in time series forecasting for its ability to provide 571 

uncertainty estimates along with predictions [44]. It can capture complex, non-linear relationships 572 

in the data and handles missing values naturally [45]. The flexible method can incorporate various 573 

trends and seasonal patterns by choosing kernel functions. However, GPR can be computationally 574 

intensive for large datasets due to the need to invert large covariance matrices, and its performance 575 

depends on the choice of kernel function, which may require domain expertise or extensive 576 

selection procedures [46]. 577 

3.2.2 Gradient Boosting and CatBoost 578 

Gradient Boosting stems from a family of ensemble learning techniques, and CatBoost was 579 

recently developed by Yandex [47]. These methods work by building a series of weak learners 580 

(typically decision trees) sequentially, with each learner trying to correct the errors of its 581 

predecessors. In time series contexts, gradient boosting methods can capture complex, non-linear 582 

relationships and handle multiple input variables [48]. CatBoost, in particular, is designed to 583 

reduce overfitting and handle categorical variables efficiently, which can be beneficial in 584 

forecasting scenarios. However, gradient boosting algorithms do not inherently account for the 585 

temporal ordering of data, requiring careful feature engineering to incorporate time-based 586 

information. As such, they may also struggle with capturing long-term dependencies without 587 

extensive lag features [49]. 588 

3.2.3 K-Nearest Neighbors (KNN) 589 

The K-Nearest Neighbors algorithm is often deployed in regression and classification tasks and 590 

can be adapted for time series forecasting [50]. The algorithm is non-parametric and can capture 591 

non-linear patterns in the data. In the context of time series forecasting, KNN finds historical 592 

periods most similar to the current state and uses their subsequent values to make predictions. 593 

KNN can be particularly effective when the time series exhibits recurring patterns or when there 594 

are strong analogies between past and future behavior. However, this algorithm's performance can 595 

degrade with high-dimensional data and long-term forecasts (especially with the lack of strong 596 
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trends). The choice of distance metric and the number of neighbors (k) can significantly impact 597 

forecast accuracy [51]. 598 

3.2.4 Neural Networks 599 

Neural networks, encompassing various architectures beyond LSTM, have become increasingly 600 

popular for time series forecasting [52]. Neural networks can capture complex, non-linear 601 

relationships in time series data and are capable of handling multiple input variables. The 602 

flexibility of their design allows practitioners to tailor architectures to specific forecasting 603 

problems. However, neural networks are blackboxes that often require large amounts of training 604 

data to perform well and can be prone to overfitting if not properly regularized. Additionally, the 605 

selection of appropriate network architecture and hyperparameters often requires significant 606 

expertise and computational resources [53]. 607 

3.2.5 Random Forest, Bagging, and XGBoost 608 

Random Forest, Bagging, and XGBoost are ensemble learning methods. Bagging, short for 609 

Bootstrap Aggregating is a method to reduce variance in predictive models by creating multiple 610 

subsets of the original dataset through bootstrap sampling. This method trains a separate model on 611 

each subset and aggregates their predictions. Random Forest, introduced by Breiman in 2001 [54], 612 

is a specific implementation of bagging that constructs multiple decision trees and merges their 613 

predictions to improve accuracy and control overfitting. XGBoost, developed by Chen and 614 

Guestrin in 2016 [55], implements gradient boosted decision trees designed for speed and 615 

performance. All these algorithms can handle non-linear relationships and are capable of capturing 616 

complex patterns in time series data when properly engineered features are provided. Additionally, 617 

while they can handle multiple input variables, they may struggle with capturing long-term 618 

dependencies without extensive lag features [56,57]. 619 

3.2.6 Support Vector Regression (SVR) 620 

Support Vector Regression is an extension of Support Vector Machines (SVM) that was developed 621 

by Vapnik et al. in the 1990s [58]. In time series forecasting, SVR works by mapping the input 622 

data into a high-dimensional feature space and finding a hyperplane that best fits the data while 623 

maintaining a specified tolerance margin. SVR is capable of capturing non-linear relationships 624 

through the use of kernel functions, making it suitable for complex time series patterns. It is 625 

particularly effective when dealing with high-dimensional data and can handle multiple input 626 

variables. SVR is less prone to overfitting compared to some other ML algorithms due to its 627 

structural risk minimization principle [59]. However, the performance of SVR can be sensitive to 628 

the tuning of kernels/hyperparameters and necessitates careful feature engineering to incorporate 629 

time-based information [60]. 630 

Table 1 A comparison among the examined algorithms in this study 631 

Algorithm  Fam ily   Met h o d o lo gy  & L o gic  Typ ic al Use Cases  St rengths/Advan t ages W eaknesses/Disadvantages 

ARIMA Statistical 
Linear, combines 
differencing with 

Time series data 
without seasonal 
patterns. 

Flexible, good for 
none/some seasonal 
data. 

Assumes linearity and 
stationarity, may not be 
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autoregression and moving 
average components. 

suitable for complex 
patterns. 

SARIMA Statistical 
Extends ARIMA to include 
seasonal components. 

Seasonal time series 
data. 

Handles seasonality, 
well-understood. 

Computationally intensive, 
linear assumptions can be 
overfitted with short time 
series. 

ETS Statistical 

Exponential smoothing 
(decomposing) techniques 
with error, trend, and 
seasonal components. 

Short-term 
forecasting, seasonal 
and non-seasonal data. 

Easy to implement, 
good for data with 
trends and seasonality. 

May overfit on noisy data 
and can struggle with 
abrupt changes. 

Holt-
Winters 

Statistical 
Triple exponential 
smoothing for data with 
trends and seasonality. 

Seasonal time series 
data. 

Simple to implement, 
effective for additive 
and multiplicative  
seasonal patterns. 

Assumes additive effects, 
may not handle high-
frequency data well and 
can struggles with irregular 
time series 

Prophet Statistical 
Additive and decomposable 
model with trend, 
seasonality, and holidays. 

Daily data with strong 
multiple seasonality 
patterns, missing data, 
and outliers. 

Robust to missing data, 
handles outliers, 
automatically detects 
changepoints, and 
incorporates domain 
knowledge easily. 

Less effective for non-daily 
data or complex patterns, 
and may struggle with 
short-term forecasts. 

Theta Statistical 

Decomposes data into two 
'theta lines' for different 
trend assumptions (e.g., 
long and short-term 
components).  

Time series data with 
trends. 

Simple, effective for 
data with a trend. 

Less effective for seasonal 
or non-linear data. Offers 
limited flexibility for 
complex patterns. 

Simple 
Moving 
Average 

Statistical 
Calculates average over a 
fixed window of past 
observations (n). 

Smoothing noisy data, 
simple forecasts. 

Simple to understand 
and implement. 

Not adaptive, lags in 
response to real trend 
changes. 

VAR Statistical 

Vector Autoregression, 
multivariate linear model 
relating different time series 
variables.  

Multivariate time 
series data. 

Captures relationships 
between multiple 
series, good for 
stationary series. 

Requires all series to be 
stationary, high 
computational cost. 

Croston's 
Method 

Statistical 

Separately forecasts non-
zero demand sizes and 
intervals and adjusts for 
intermittent demand. 

Forecasting 
intermittent demand. 

Good for sparse or 
intermittent data. 

May be biased, assumes 
demand pattern does not 
change. 

LSTM ML 
A type of recurrent neural 
network that uses gates to 
control information flow. 

Complex patterns, 
large datasets, non-
linear relationships. 

Good for capturing long 
dependencies, non-
linear patterns.  

Requires large datasets, 
computationally intensive. 
Blackbox nature limits 
interpretability. 

Neural 
Networks 

ML 
Layers of interconnected 
neurons learning data 
features. 

Complex nonlinear 
patterns, high-
dimensional data. 

Highly flexible, powerful 
for complex patterns 
and can handle non-
linear relationships. 

Requires large data and 
careful feature 
engineering, prone to 
overfitting, black box. 

Gaussian 
Process 

Regression 
ML 

Non-parametric kernel-
based probabilistic model. 

Small to medium 
datasets, needing 
uncertainty 
estimation. 

Provides uncertainty 
measures, flexible. 

Computationally expensive, 
not for large data. 

KNN ML 

Predicts based on similar 
historical patterns by using 
'k' nearest points for 
prediction. 

Small datasets, simple 
non-linear patterns. 

Simple, non-parametric, 
and effective for non-
linearities in small 
datasets. 

Not scalable, sensitive to 
the choice of k and noisy 
data. 

SVR ML 

Fits within a certain 
threshold and finds the 
optimal hyperplane in high-
dimensional space. 

Regression with clear 
margin of error. 

Effective in high-
dimensional space, 
robust to outliers. 

Requires good parameter 
tuning, and can be 
computationally intensive 
for very large datasets. 

Random 
Forest 

ML 
Ensemble of decision trees, 
averaging to improve 
prediction. 

Various problems. 
Robust, handles 
overfitting well, good 
for mixed data types, 

Requires feature 
engineering for temporal 
aspects. 
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and can provide feature 
importance 

XGBoost ML 
Gradient boosting with 
decision trees optimized for 
speed and performance. 

Various problems. 
Fast, scalable, high 
performance, handles 
various data types. 

Prone to overfitting if not 
tuned properly. 

Gradient 
Boosting 

ML 

Sequential correction of 

predecessor's errors, using 
decision trees. 

Various problems. 
Reduces bias and 
variance, powerful. 

Computationally intensive 
and prone to overfitting. 

CatBoost ML Categorical Boosting. 
Datasets with many 
categorical features. 

Efficient with 
categorical data, less 
prone to overfitting. 

Slightly slower compared 
to other boosting methods. 

Bagging ML 

Bootstrap aggregating, 
reduces variance by 
averaging a set of parallel 
estimators. 

Reducing variance in 
noisy data sets. 

Reduces overfitting, 
robust to noisy data. 

Can be less effective on 
biased models, high 

memory consumption. 

 632 

4.0 Description of benchmarking experiments, metrics, and datasets  633 

This benchmarking analysis involves a set of 25 synthetic and 25 real timeseries. This analysis 634 

was run and evaluated in a Python 3.10.5 environment using an Intel(R) Core(TM) i7-9700F CPU 635 

@ 3.00GHz and an installed RAM of 32.0GB. All algorithms were run in default settings to allow 636 

fairness and ensure reproducibility, and the performance of each algorithm was evaluated through 637 

several metrics, as discussed below and listed in Table 2. These metrics, along with the selected 638 

sizes of datasets, followed the recommendations of [7,61]. 639 

We utilize four primary metrics that can be classified under global/general and specific/internal 640 

metrics. The global metrics are suitable for broad comparisons and evaluations across multiple 641 

datasets and models (e.g., Mean Absolute Scaled Error (MASE) and Dynamic Time Warping 642 

(DTW)). On the other hand, internal metrics are used to provide detailed insights into particular 643 

aspects of model performance (such as mean absolute deviation (MAD) and direction accuracy 644 

(DA)). It is worth noting that other metrics (i.e., Root Mean Square Error (RMSE) and the Mean 645 

Absolute Error (MAE)) were not used herein due to their inherent limitations and vulnerabilities 646 

with respect to time series analysis, as pointed out by [62,63].  647 

The MASE is a relative measure of forecast accuracy that scales the forecast error by the in-sample 648 

mean absolute error. MASE is scale-independent and can be used to compare forecast accuracy 649 

across different time series [64,65]. DTW measures the similarity between two time series by 650 

finding an optimal alignment between them. Unlike simple distance measures, DTW can handle 651 

time shifts and distortions by allowing flexible matching of time indices [66]. The MAD measures 652 

the average absolute error between the actual and forecasted values to clearly indicate the average 653 

magnitude of forecast errors [67]. The DA measures how well the model predicts the direction of 654 

the time series movement. This metric evaluates whether the forecast correctly predicts the 655 

increase or decrease in the actual values from one time point to the next.  656 

Table 2 List of performance metrics.  657 
Typ e Met r ic  Fo rm u la 

Specific/Internal 
Metrics  

Mean Absolute 
Deviation (MAD) 

𝑀𝐴𝐷 = 
1

𝑛
∑ |𝑦𝑡 − 𝑦𝑡 |

𝑛

𝑡=1

 

Where: 

• yt is the actual value at time t. 
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• y^t is the forecasted value at time t. 
n is the total number of observations. 

Direction Accuracy 
(DA) 

𝐷𝐴 = 
1

𝑛 − 1
∑ II((𝑦𝑡 − 𝑦𝑡− 1)(𝑦𝑡 − 𝑦𝑡−1) > 0)

𝑛

𝑡=2

 

Where: 

• yt is the actual value at time t. 

• y^t is the forecasted value at time t. 

• II is the indicator function that equals 1 if the condition inside is true and 0 otherwise. 

• n is the total number of observations. 

Global/External 
Metrics 

Mean Absolute 
Scaled Error (MASE) 

𝑀𝐴𝑆𝐸 = 

1
𝑛

∑ |𝑦𝑡 − 𝑦𝑡 |𝑛
𝑡=1

1
𝑛

∑ |𝑦𝑡 − 𝑦𝑡 −1|𝑛
𝑡= 1

 

Where: 

• yt is the actual value at time t. 

• y^t is the forecasted value at time t. 

• n is the total number of observations. 

Dynamic Time 
Warping (DTW) 

𝐷𝑇𝑊(𝐴,𝐵) =  𝑚𝑖𝑛√∑ (𝑎𝑖 − 𝑏𝑖)2

𝑛

𝑖=2

 

Where: 

• A=(a1,a2,…,an) and B = (b1,b2,…,bm) are two sequences of length n and m respectively. 

• i′ is the optimal alignment index of b corresponding to ai. 

 658 

4.1 Synthetic datasets 659 

Twenty five synthetic timeseries of various scenarios were generated and examined by all 660 

algorithms (see Fig. 1 and Table 3). These timeseries were generated via the generate_time_series 661 

function, which allows researchers to generate controlled datasets that can be used to benchmark 662 

and evaluate the performance of time series forecasting models. This particular function accepts a 663 

specific mathematical function and the number of data points (n_points) as input parameters. Then, 664 

this function generates a sequence of equally spaced time points over a specified range (t_max). 665 

The chosen function is applied to these time points to produce the corresponding time series data. 666 

Gaussian noise is added to simulate real-world conditions where data often includes random 667 

variations. The generate_time_series function starts by creating an array of time points using 668 

numpy.linspace, which ensures an even distribution of points between 0 and the specified t_max. 669 

This array of time points, t, is then passed to the provided time series function (func), which applies 670 

the mathematical transformation and returns the resulting data series. 671 

Table 3 Parameters used in the synthetic timeseries  672 

Fu n c t io n  D esc r ip t io n  Mathematical Ex p ressio n  No ise L evel Ch arac t er ist ic s  
Linear trend Linear increase with Gaussian noise 0.5t+ϵ σ=0.1 Simple trend 

Quadratic trend Quadratic increase with Gaussian noise 0.05t2+ϵ σ=0.1 Parabolic trend 

Exponential growth Exponential increase with Gaussian noise e0.1t+ϵ σ=0.1 Exponential trend 

Sine wave (seasonal) Periodic sine wave with Gaussian noise sin(2πt)+ϵ σ=0.1 
Seasonal, periodic 

pattern 
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Cosine wave with 
linear trend 

Cosine wave superimposed on a linear 
trend with noise 

cos(2πt)+0.1t+ϵ σ=0.1 
Trend and 
seasonality 

combination 

Composite of sine 
waves 

Multiple sine waves combined with 
Gaussian noise 

sin(2πt)+0.5sin(4πt)+ϵ  σ=0.1 
Multiple 

seasonalities 
Logistic growth Sigmoidal growth with Gaussian noise 1/1+e−t+5+ϵ  σ=0.05 Non-linear growth 

Damped oscillation 
Exponentially damped sine wave with 
noise 

e−0.1tsin(2πt)+ϵ  σ=0.05 Oscillatory effect 

Step function Discrete steps with Gaussian noise step(t)+ϵ σ=0.1 Abrupt changes 

Sawtooth wave 
Linear periodic rise with a drop and 
Gaussian noise 

(t%1)+ϵ  σ=0.05 Sharp transitions 

Square wave 
Alternating high and low values with 
Gaussian noise 

sign(sin(2πt))+ϵ σ=0.1 
Discrete, binary 

states 

Exponential decay 
Exponential decrease with Gaussian 
noise 

e−0.2t+ϵ σ=0.05 Decay trend 

Logarithmic growth Logarithmic increase with Gaussian noise log(t+1)+ϵ σ=0.1 Logarithmic trend 
Composite trend, 

seasonal, and noise 
Combination of quadratic trend, sine 
wave, and noise 

0.01t2+sin(2πt)+0.5ϵ σ=1 Complex pattern 

Autocorrelated 
process (AR(1)) 

Autoregressive process with Gaussian 
noise 

0.8yt−1+ϵ σ=0.5 
Dependency on 
previous values 

Polynomial trend 
(cubic) 

Cubic polynomial trend with Gaussian 
noise 

0.01t3−0.1t2+0.5t+ϵ  σ=0.1 
Higher-order 

polynomial trend 

Sigmoid function Sigmoidal growth with Gaussian noise 1/1+e−t+5+ϵ σ=0.05 Non-linear growth 

Impulse response 
Exponentially decaying sinusoidal 
impulse with noise 

e−tsin(2πt)+ϵ σ=0.05 
Impulse-like 

behavior 

Cyclical pattern with 
trend 

Sine wave with linear trend and Gaussian 
noise 

sin(2πt/5)+0.05t+ϵ σ=0.1 Cyclic and trending 

Composite of 
exponential growth 
and seasonal pattern 

Exponential growth with superimposed 
sine wave and noise 

e0.05t+0.5sin(2πt)+ϵ σ=0.1 
Complex trend and 

seasonality 

Piecewise linear 
function 

Linear segments with Gaussian noise piecewise(t)+ϵ σ=0.1 
Segmented linear 

behavior 

Brownian motion 
(random walk) 

Cumulative sum of Gaussian noise ∑ϵ σ=0.1 
Stochastic, random 

walk 

Composite of 
multiple trends 

Combination of quadratic, sinusoidal, 
and exponential trends with noise 

0.01t2+0.1sin(2πt)+0.05e0.1t+
ϵ  

σ=0.1 
Multiple trend 
components 

Chaotic logistic map Logistic map function with chaos 3.9t(1−t)+ϵ σ=0.1 Chaotic behavior 

GARCH-like volatility 
clustering 

Gaussian noise with time-varying 
volatility 

N[(0, 0.1 + 0.9 abs(yt-1)] 
(0, 0.1 + 0.9 

abs(yt-1) 
Volatility clustering 

 673 
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 674 

Fig. 1 Visualization of the synthetic datasets  675 

The outcome of the benchmarking analysis on the synthetic datasets is listed in Table 4. As one 676 

can see, this table showcases three different ranking methods (namely, based on the average 677 

ranking, normalized ranking, and wins). All ranking systems used the abovementioned DA, DTW, 678 

MASE, and MAD metrics, wherein lower values indicate better performance (rank 1 is best), 679 

except for the DA metric, where higher values indicate better performance (rank 1 is best).  680 
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The first ranking system represents averages across all datasets for each algorithm. Each metric 681 

was ranked individually, and the average of these ranks determined the Average Rank for each 682 

algorithm. The Final Rank was then assigned based on the Average Rank values. Then, the second 683 

ranking system involves averaging the original metric values across all datasets for each algorithm. 684 

These averages were then normalized to a 0-1 scale for each metric. The Average Normalized Score 685 

is then computed as the mean of all normalized metric scores for each algorithm, and the Final 686 

Rank is derived from these average normalized scores to allow for a fair comparison across 687 

different metrics and algorithms. Finally, the third ranking system adopted the ranking by Wins 688 

method. In this system, metric values were averaged across all datasets for each algorithm. Each 689 

metric was ranked individually. The rank columns display the rank for each metric, and the 690 

Average Rank reflects the mean of these ranks for each algorithm. The Final Rank was determined 691 

based on the Average Rank values. This ranking method aimed to balance performance across all 692 

metrics, emphasizing how frequently each algorithm performed best in each metric. 693 

Table 4 presents a collective view of the algorithmic performance across the different datasets and 694 

systems used. As one can see, SPINEX ranks 5th under the first ranking system and 1st under the 695 

other two ranking systems. Despite not being the top-ranked algorithm in the first ranking system, 696 

SPINEX consistently performed well across different metrics. This performance suggests a well-697 

rounded response. When comparing SPINEX to other algorithms such as SARIMA, Prophet, Holt-698 

Winters, and Theta, it is evident that SPINEX stands out regarding consistent performance and 699 

robustness. Similarly, Prophet and Theta showed competitive performance but could not match 700 

SPINEX's consistency across all ranking systems. 701 

Table 4 Ranking results on real data 702 

Algo r i t h m  
D i rectio n  

Ac c urac y  
D TW  M ASE M AD  

D i rec t io n  

Ac c urac y  ( ran k )  
D TW  ( ran k )  

M ASE 

( ran k )  

M AD  

( ran k )  

Av erage 

( ran k )  

F in al  

( ran k )  

B as ed  o n  av erage ran k in gs  

SARIMA 0.578 15.353 2625.313 0.116 3.570 5.830 7.890 9.250 6.640 1 

Prophet 0.546 2.058 58.910 0.095 3.870 6.210 7.430 9.030 6.640 2 

Holt-Winters 0.572 15.419 46.643 0.291 3.360 6.400 7.980 8.910 6.660 3 

Theta 0.550 2.451 82.481 0.100 3.600 7.080 7.520 9.660 6.960 4 

SPINEX 0.602 1.956 45.676 0.075 3.230 6.840 10.300 8.950 7.330 5 

ARIMA 0.264 2.544 84.369 0.097 7.190 8.800 7.900 6.980 7.720 6 

Croston 0.000 2.602 87.962 0.101 10.370 9.130 7.850 5.360 8.180 7 

ETS 0.000 2.603 87.962 0.101 10.370 9.360 7.980 5.350 8.260 8 

LSTM 0.502 3.756 115.265 0.090 4.390 9.060 9.500 10.140 8.270 9 

Random Forest 0.000 2.698 88.205 0.101 10.370 10.120 8.990 5.290 8.690 10 

Bagging 0.000 2.698 88.205 0.101 10.370 10.120 8.990 5.290 8.690 10 

Gradient Boosting 0.000 2.689 88.144 0.101 10.370 10.210 8.950 5.470 8.750 12 

XGBoost 0.000 2.695 88.281 0.101 10.370 10.560 9.310 5.340 8.890 13 

SMA 0.000 2.669 88.733 0.101 10.370 10.530 9.640 5.400 8.980 14 

KNN 0.000 2.669 88.733 0.101 10.370 10.530 9.590 5.450 8.990 15 

CatBoost 0.000 2.666 89.402 0.101 10.370 10.990 9.820 5.330 9.130 16 

Neural Network 0.518 6.952 194.656 0.110 3.660 13.880 14.080 11.850 10.870 17 

SVR 0.166 4.262 157.608 0.115 7.750 13.230 14.220 11.280 11.620 18 

Gaussian Process 0.255 7.354 144.260 0.097 6.840 15.660 16.440 9.300 12.060 19 

B as ed  o n  n o rmal i z ed  ran k in gs  

SPINEX 0.602 1.956 45.676 0.075 0.000 0.000 0.000 0.000 0.000 1 

Prophet 0.546 2.058 58.910 0.095 0.094 0.008 0.005 0.093 0.050 2 
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Theta 0.550 2.451 82.481 0.100 0.087 0.037 0.014 0.115 0.063 3 

LSTM 0.502 3.756 115.265 0.090 0.167 0.134 0.027 0.070 0.100 4 

ARIMA 0.264 2.544 84.369 0.097 0.562 0.044 0.015 0.103 0.181 5 

Neural Network 0.518 6.952 194.656 0.110 0.139 0.371 0.058 0.164 0.183 6 

Gaussian Process 0.255 7.354 144.260 0.097 0.577 0.401 0.038 0.103 0.280 7 

SVR 0.166 4.262 157.608 0.115 0.725 0.171 0.043 0.184 0.281 8 

Croston 0.000 2.602 87.962 0.101 1.000 0.048 0.016 0.119 0.296 9 

ETS 0.000 2.603 87.962 0.101 1.000 0.048 0.016 0.119 0.296 10 

KNN 0.000 2.669 88.733 0.101 1.000 0.053 0.017 0.119 0.297 11 

SMA 0.000 2.669 88.733 0.101 1.000 0.053 0.017 0.119 0.297 11 

CatBoost 0.000 2.666 89.402 0.101 1.000 0.053 0.017 0.119 0.297 13 

Gradient Boosting 0.000 2.689 88.144 0.101 1.000 0.054 0.016 0.119 0.297 14 

XGBoost 0.000 2.695 88.281 0.101 1.000 0.055 0.017 0.119 0.298 15 

Random Forest 0.000 2.698 88.205 0.101 1.000 0.055 0.016 0.119 0.298 16 

Bagging 0.000 2.698 88.205 0.101 1.000 0.055 0.016 0.119 0.298 16 

Holt-Winters 0.572 15.419 46.643 0.291 0.051 1.000 0.000 1.000 0.513 18 

SARIMA 0.578 15.353 2625.313 0.116 0.040 0.995 1.000 0.192 0.557 19 

B as ed  o n  win s  

SPINEX 0.602 1.956 45.676 0.075 1 1 1 1 1 1 

Prophet 0.546 2.058 58.910 0.095 5 2 3 3 3.25 2 

Theta 0.550 2.451 82.481 0.100 4 3 4 6 4.25 3 

ARIMA 0.264 2.544 84.369 0.097 8 4 5 4 5.25 4 

Croston 0.000 2.602 87.962 0.101 11 5 6 7 7.25 5 

ETS 0.000 2.603 87.962 0.101 11 6 7 7 7.75 6 

Gradient Boosting 0.000 2.689 88.144 0.101 11 10 8 7 9 7 

SMA 0.000 2.669 88.733 0.101 11 8 12 7 9.5 8 

LSTM 0.502 3.756 115.265 0.090 7 14 15 2 9.5 8 

KNN 0.000 2.669 88.733 0.101 11 8 12 7 9.5 8 

Random Forest 0.000 2.698 88.205 0.101 11 12 9 7 9.75 11 

CatBoost 0.000 2.666 89.402 0.101 11 7 14 7 9.75 11 

Bagging 0.000 2.698 88.205 0.101 11 12 9 7 9.75 11 

XGBoost 0.000 2.695 88.281 0.101 11 11 11 7 10 14 

Holt-Winters 0.572 15.419 46.643 0.291 3 19 2 19 10.75 15 

Gaussian Process 0.255 7.354 144.260 0.097 9 17 16 5 11.75 16 

Neural Network 0.518 6.952 194.656 0.110 6 16 18 16 14 17 

SARIMA 0.578 15.353 2625.313 0.116 2 18 19 18 14.25 18 

SVR 0.166 4.262 157.608 0.115 10 15 17 17 14.75 19 

 703 

Figure 2 shows a more detailed examination of the performance of all algorithm algorithms 704 

evaluated across different settings and metrics. This evaluation was conducted for two different 705 

parameters: maximum time (tmax) and number of sequence points (npoints).  706 

In terms of DA, which measures how well the model predicts the direction of the time series 707 

movement, SPINEX maintained strong performance across both settings. The graphs indicate that 708 

SPINEX's performance remained relatively stable and high compared to other algorithms as the sub-709 

settings increased. Such stability can be crucial for applications requiring reliable directional 710 

predictions. More specifically, in the tmax graph, SPINEX showed a slight improvement with higher 711 

sub-settings, indicating its adaptability to longer forecasting horizons. Similarly, in the npoints 712 

graph, SPINEX outperformed most other algorithms, demonstrating its effectiveness in handling 713 

varying data point quantities. 714 

For the DTW metric, which measures the alignment between predicted and actual time series, 715 

SPINEX also performed well across different settings. In both graphs, SPINEX maintained lower 716 
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DTW values, indicating closer alignment and better predictive accuracy. The tmax graph shows that 717 

SPINEX's DTW values remained relatively stable, suggesting its robustness to changes in the 718 

forecast length. The npoints graph further highlights SPINEX's capability to handle datasets with 719 

varying numbers of points without significant loss in accuracy. Furthermore, SPINEX maintained 720 

lower MASE and MAD values compared to many other algorithms. This performance indicates 721 

that SPINEX can provide accurate forecasts. Figure 3 presents a visual example of two time series 722 

as predicted by SPINEX and other algorithms.  723 
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Figure 2 Individual rankings per algorithm for the internal and external metrics. 725 

 726 
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  727 

Fig. 3 Visualization of forecasting on Dataset no. 2 [tmax = 10, npoints = 50] (top) and Dataset no. 728 

6 [tmax = 1, npoints = 500] (bottom) 729 
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4.2 Real datasets 730 

Twenty four real datasets were used herein to further evaluate the performance of SPINEX against 731 

the other algorithms listed above. These datasets span univariate and multivariate scenarios(see 732 

Table 5 and Fig. 4). Additional details can be found in the cited sources.  733 

Table 5 Real datasets used in the analysis  734 

Typ e D at aset  Nam e Sam p les* Feat u res Referen c es 

Univariate 

Airline Passengers 144 2 [68] 

Sunspots 2820 2 [69] 

Daily Female Births 365 2 [70] 

Yearly Water Usage 79 2 [71] 

Daily Minimum Temperatures 3650 2 [72] 

Monthly Car Sales 108 2 [73] 

Shampoo Sales Data 36 2 [74] 

Temperature Data 3650 2 [75] 

Monthly Writing Paper Sales 147 2 [76] 

Monthly Champagne Sales 105 2 [77] 

Monthly Robberies 118 2 [78] 

Electric Production 397 2 [79] 

Web Traffic Dataset 550 2 [80] 

Multivariate 

Stock and PM2.5 Prediction 5650 10 [81] 

Tata Global Forecasting 2100 8 [82] 

International Airline Passengers 13391 6 [83] 

Pollution Dataset 43824 13 [84] 

Daily Stock Prices 52000 8 [85] 

ETT-small 17420 8 [86] 

Jaipur Final Clean Data 676 40 [87] 

Aprocessed 604802 17 [88] 

Insurance 1338 7 [89] 

Indian Crime Data Analysis Forecasting I 9840 33 [90] 

Indian Crime Data Analysis Forecasting II 295374 3 [90] 

*Large datasets were stopped at 5000 data points, given the computational resources available during this study.  735 
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Fig. 4 Visualization of the real datasets 737 

The benchmarking and ranking analysis results are examined similarly to the case of synthetic data 738 

by using the average, normalized, and win methods. These results are listed in Table 6. This table 739 

shows that SPINEX consistently ranks in the top two positions, along with the Holt-Winters 740 

algorithm.  741 

Table 6 Ranking results on real data 742 

Algo r i t h m  
D i rectio n  
Ac c urac y  

D TW  M ASE M AD  
D i rec t io n  

Ac c urac y  ( ran k )  
D TW  ( ran k )  

M ASE 
( ran k )  

M AD  
( ran k )  

O v eral l  
ran k  

F in al  
( ran k )  

B as ed  o n  av erage ran k in gs  

Holt-Winters 0.549 1.998 3.807 0.060 5.400 9.960 13.960 15.960 11.320 1 

SPINEX 0.563 1.635 2.671 0.063 5.320 5.080 17.240 18.520 11.540 2 

SARIMA 0.540 2.422 3.778 0.065 5.400 11.160 16.040 15.800 12.100 3 

Prophet 0.464 2.100 6.896 0.071 8.440 8.680 13.560 19.640 12.580 4 

Theta 0.491 2.299 13.739 0.073 6.760 13.400 18.040 13.160 12.840 5 

SMA 0.000 2.472 23.792 0.078 20.040 19.320 14.840 10.600 16.200 6 

LSTM 0.402 15.077 48.378 0.075 9.500 17.420 20.670 17.830 16.350 7 

KNN 0.000 2.472 23.792 0.078 20.040 19.720 15.160 10.600 16.380 8 

XGBoost 0.000 2.594 24.067 0.078 20.040 20.200 16.840 10.280 16.840 9 

Gradient Boosting 0.000 2.567 24.043 0.078 20.040 20.120 16.680 10.760 16.900 10 

Random Forest 0.000 2.597 23.894 0.078 20.040 20.920 16.680 11.080 17.180 11 

Bagging 0.000 2.597 23.894 0.078 20.040 20.920 16.680 11.080 17.180 11 

CatBoost 0.000 2.629 24.776 0.078 20.040 21.640 18.200 9.960 17.460 13 

Croston 0.000 2.610 23.925 0.078 20.040 21.400 19.400 10.840 17.920 14 

ETS 0.000 2.612 23.927 0.078 20.040 21.800 19.480 10.840 18.040 15 

ARIMA 0.146 2.536 23.839 0.079 15.400 21.000 20.440 17.640 18.620 16 

SVR 0.156 3.348 105.681 0.093 15.080 21.480 23.080 19.880 19.880 17 

Neural Network 0.489 5.460 37.621 0.084 6.360 27.320 26.040 20.920 20.160 18 

Gaussian Process 0.197 6.240 159.080 0.082 13.080 33.640 32.200 19.560 24.620 19 

B as ed  o n  n o rmal i z ed  ran k in gs  

Holt-Winters 0.549 1.998 3.807 0.060 0.024 0.027 0.007 0.000 0.015 1 

SPINEX 0.563 1.635 2.671 0.063 0.000 0.000 0.000 0.093 0.023 2 

SARIMA 0.540 2.422 3.778 0.065 0.039 0.059 0.007 0.176 0.070 3 

Prophet 0.464 2.100 6.896 0.071 0.176 0.035 0.027 0.333 0.143 4 

Theta 0.491 2.299 13.739 0.073 0.126 0.049 0.071 0.400 0.161 5 

Neural Network 0.489 5.460 37.621 0.084 0.130 0.285 0.223 0.730 0.342 6 

ARIMA 0.146 2.536 23.839 0.079 0.740 0.067 0.135 0.580 0.381 7 

Simple 0.000 2.472 23.792 0.078 1.000 0.062 0.135 0.546 0.436 8 

KNN 0.000 2.472 23.792 0.078 1.000 0.062 0.135 0.546 0.436 9 

Gradient Boosting 0.000 2.567 24.043 0.078 1.000 0.069 0.137 0.546 0.438 10 

Bagging 0.000 2.597 23.894 0.078 1.000 0.072 0.136 0.546 0.438 11 

Random 0.000 2.597 23.894 0.078 1.000 0.072 0.136 0.546 0.438 11 

XGBoost 0.000 2.594 24.067 0.078 1.000 0.071 0.137 0.546 0.438 13 

Croston 0.000 2.610 23.925 0.078 1.000 0.072 0.136 0.546 0.439 14 

ETS 0.000 2.612 23.927 0.078 1.000 0.073 0.136 0.546 0.439 15 

CatBoost 0.000 2.629 24.776 0.078 1.000 0.074 0.141 0.546 0.440 16 

LSTM 0.402 15.077 48.378 0.075 0.286 1.000 0.292 0.456 0.508 17 

SVR 0.156 3.348 105.681 0.093 0.722 0.127 0.659 1.000 0.627 18 

Gaussian Process 0.197 6.240 159.080 0.082 0.650 0.343 1.000 0.672 0.666 19 

B as ed  o n  win s  

SPINEX 0.563 1.635 2.671 0.063 1 1 1 2 1.25 1 

Holt-Winters 0.549 1.998 3.807 0.060 2 2 3 1 2 2 

SARIMA 0.540 2.422 3.778 0.065 3 5 2 3 3.25 3 

Prophet 0.464 2.100 6.896 0.071 6 3 4 4 4.25 4 

Theta 0.491 2.299 13.739 0.073 4 4 5 5 4.5 5 

SMA 0.000 2.472 23.792 0.078 11 6 6 7 7.5 6 

KNN 0.000 2.472 23.792 0.078 11 7 7 7 8 7 

ARIMA 0.146 2.536 23.839 0.079 10 8 8 16 10.5 8 

XGBoost 0.000 2.594 24.067 0.078 11 10 14 7 10.5 8 

Croston 0.000 2.610 23.925 0.078 11 13 11 7 10.5 8 
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ETS 0.000 2.612 23.927 0.078 11 14 12 7 11 11 

Random Forest 0.000 2.597 23.894 0.078 11 11 9 13 11 11 

Bagging 0.000 2.597 23.894 0.078 11 11 9 13 11 11 

Gradient Boosting 0.000 2.567 24.043 0.078 11 9 13 13 11.5 14 

CatBoost 0.000 2.629 24.776 0.078 11 15 15 7 12 15 

LSTM 0.402 15.077 48.378 0.075 7 19 17 6 12.25 16 

Neural Network 0.489 5.460 37.621 0.084 5 17 16 18 14 17 

Gaussian Process 0.197 6.240 159.080 0.082 8 18 19 17 15.5 18 

SVR 0.156 3.348 105.681 0.093 9 16 18 19 15.5 18 

 743 

Figure 5 illustrates the performance of various algorithms across different settings and metrics. 744 

Each of these metrics is evaluated across two settings: dataset length (short [datasets of less than 745 

200 points] vs. long [datasets of more than 200 points]) and dataset type (univariate vs. 746 

multivariate). Overall, one can see the performance of SPINEX matches well with other algorithms 747 

and, in some cases, outperforms them.  748 

For example, in the DA plots, SPINEX demonstrates a notable trend for short and long sequences 749 

and univariate and multivariate data. This suggests that SPINEX is proficient at predicting the 750 

correct direction. In the DTW metric, SPINEX exhibits a lower DTW value for short sequences, 751 

which indicates a higher similarity and better alignment of time series data than other algorithms. 752 

However, as the sequence length extends, SPINEX's DTW value increases, suggesting that its ability 753 

to maintain similarity diminishes slightly with longer sequences. This observation holds for the 754 

uni and multivariate datasets and other algorithms.  755 

The MASE metric plots reveal that SPINEX performs consistently well across different lengths and 756 

types, with slightly better performance for short and univariate sequences. This trend continues for 757 

long sequences, where SPINEX remains competitive. It is worth noting that this algorithm maintains 758 

the lowest average MASE for long and multivariate sequences among the other algorithms. 759 

Finally, the MAD metric shows that SPINEX consistently achieves low values across both length 760 

and type dimensions.  761 
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Figure 5 Further analysis in terms of dataset length and type 763 

Figure 6 presents a sample of a visual representation of two time series as predicted by SPINEX and 764 

other algorithms. These two datasets represent those that fall under short and long time series. In 765 

both cases, it is clear that the forecasts by SPINEX are in good agreement with the actual series.  766 
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 768 

Fig. 6 Visualization of forecasting on Yearly Water Usage dataset (top) and Tata Global 769 

Forecasting dataset (bottom) 770 
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4.3 Dataset examination and Pareto efficiency analysis 771 

Once the above analysis was completed, the same results were examined to identify the most 772 

reoccurring complex datasets that received the poorest performance and the most consistently 773 

ranked datasets with the best performance across all algorithms. The outcome of this analysis is 774 

listed in Table 7. This table shows the top 3 datasets in each category and synthetic and real 775 

datasets. Interestingly, all complex datasets are univariates, while those that fall under the 776 

consistent datasets have a mixture of both types. 777 

Table 7 Dataset examination  778 

Typ e  Co mplex  Dat aset  Ch arac t er ist ic s   Oc curren c es  Consistent Dataset  Ch arac t er ist ic s   Oc c u rren c es 

Synthetic 
data 

Dataset 27 
tmax: 100,  

n_points: 5000 
17 Dataset 106 

tmax: 100,  
n_points: 50 

9 

Dataset 96 
tmax : 10,  

n_points: 5000 
14 Dataset 115 

tmax: 100,  
n_points: 50 

9 

Dataset 99 
tmax: 100,  

n_points: 5000 
8 Dataset 91 

tmax: 1,  
n_points: 50 

9 

Real data 

Sunspots 2820/2 15 
Yearly Water 

Usage 
79/2 13 

Stock and PM2.5 
Prediction 

5650/10 14 
Tata Global 
Forecasting 

2100/8 10 

Indian Crime II 550/2 8 Jaipur  676/40 7 

 779 

A Pareto analysis is performed on synthetic datasets to determine the best-performing time series 780 

algorithms based on the selected evaluation metrics (see Table 8). This analysis employs Pareto 781 

optimality to identify non-dominated solutions (i.e., those representing optimal trade-offs between 782 

different performance metrics: DA, DTW, MASE, and MAD). The concept of Pareto optimality 783 

ensures that the final set of recommended algorithms consists of truly superior options, each 784 

offering a distinct balance of strengths across various performance criteria. The process starts by 785 

normalizing all metrics to a 0-1 scale using min-max normalization. The normalized data is then 786 

grouped by algorithm and dataset to calculate mean values for each metric. Each algorithm further 787 

aggregates these grouped results to evaluate overall performance across all datasets. Then, a 788 

solution is Pareto optimal if no other solution is superior in all metrics simultaneously.  789 

Table 8 Pareto analysis  790 

Algo r it h m  D irection Accurac y  D TW  MASE MAD  P areto Effic ien t  

SPINEX 0.602 1.956 45.676 0.075 TRUE 
Holt-Winters 0.572 15.419 46.643 0.291 TRUE 

Theta 0.550 2.451 82.481 0.100 TRUE 

LSTM 0.502 3.756 115.265 0.090 TRUE 
Prophet 0.546 2.058 58.910 0.095 FALSE 

ARIMA 0.264 2.544 84.369 0.097 FALSE 

Croston 0.000 2.602 87.962 0.101 FALSE 
ETS 0.000 2.603 87.962 0.101 FALSE 

Gradient Boosting 0.000 2.689 88.144 0.101 FALSE 

Random Forest 0.000 2.698 88.205 0.101 FALSE 

Bagging 0.000 2.698 88.205 0.101 FALSE 
XGBoost 0.000 2.695 88.281 0.101 FALSE 

Simple Moving Average 0.000 2.669 88.733 0.101 FALSE 

KNN 0.000 2.669 88.733 0.101 FALSE 
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CatBoost 0.000 2.666 89.402 0.101 FALSE 

Gaussian Process 0.255 7.354 144.260 0.097 FALSE 
SVR 0.166 4.262 157.608 0.115 FALSE 

Neural Network 0.518 6.952 194.656 0.110 FALSE 

SARIMA 0.578 15.353 2625.313 0.116 FALSE 

 791 

4.4 Complexity analysis 792 

We evaluate the complexity of the selected algorithms by analyzing the execution time data across 793 

across 50, 500, and 5000 samples (n). Then, we fit three types of models to this data: polynomial 794 

(linear in log-log scale), logarithmic, and exponential. For each algorithm, we compute the 795 

regression parameters and the R² values for these models as a means to measure the goodness of 796 

fit and the model with the highest R² value is considered the best fit, and its corresponding Big O 797 

notation is recorded. This analysis reveals that SPINEX demonstrates logarithmic complexity and 798 

hence indicates that its execution time scales efficiently with the logarithm of the input size, 799 

represented as O(log n), as seen in Fig. 7. It is worth noting that this algorithm was found to have 800 

only logarithmic complexity, while others had polynomial or exponential complexity (see Table  801 

9). However, and from a scalable perspective, this complexity of SPINEX arises from the 802 

integration of multiple similarity measures (as well as the embedded dynamic adjustments) within 803 

the algorithm. The overhead of these settings may pose challenges in practical implementations 804 

when this algorithm is used in large datasets. This can be thought of as one challenge that could 805 

be revisited and overcome in the near future.  806 

 807 

Fig. 7 Outcome of complexity analysis 808 

Table 9 Complexity analysis 809 



This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.  

 

Please cite this paper as:  

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors 

exploration for time series and forecasting problems. Computers & Industrial 

Engineering. https://doi.org/10.1016/j.cie.2024.110812. 

 

38 

 

Algo r it h m  Co m p lex it y  t yp e  R 2  Big O n o t atio n  

Prophet exp 0.84 O(en) 
ETS exp 0.94 O(en) 

XGBoost exp 0.92 O(en) 

Theta exp 0.85 O(en) 
Simple Moving Average exp 0.98 O(en) 

Holt-Winters exp 0.99 O(en) 

Croston exp 0.89 O(en) 

Gradient Boosting exp 1.00 O(en) 
SPINEX log 0.98 O(log n) 

CatBoost poly 0.62* O(n0.12) 

KNN poly 0.54* O(n0.25) 
ARIMA poly 0.66* O(n0.42) 

Bagging poly 0.83 O(n0.46) 

Random Forest poly 0.84 O(n0.49) 
SARIMA poly 0.93 O(n0.71) 

Neural Network poly 0.85 O(n0.86) 

LSTM poly 1.00 O(n0.93) 
SVR poly 0.72 O(n1.36) 

Gaussian Process poly 0.97 O(n1.72) 
*note the low value. 810 

4.5 Explainability analysis 811 

To showcase the explainability capabilities of SPINEX, two synthetic datasets (No. 1 and No. 11) 812 

are provided herein, as taken from two different datasets. Figure 8 shows the predicted segment 813 

and three of its neighbors. The same plot also visually represents the neighbors and their overall 814 

similarity as compared to the segment at hand. For example, this figure represents the top three 815 

selected time segments that align the most with the current segment being investigated by SPINEX. 816 

As one can see, the identified segments (i.e., neighbors) align well with the current segment – 817 

which further showcases the applicability of SPINEX. The companion similarity score plot also, 818 

visually, presents the importance of the similarity metrics selected by the user in each case and 819 

notes how each similarity measure relates to the identified segments. Finally, this plot also shows 820 

the individual scores of the similarity measures used to identify them.  821 
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 822 

 823 

(a) Dataset 1 824 

 825 
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 826 

(b) Dataset 11 827 

Fig. 8 Example of explainability capability of SPINEX828 

5.0 Conclusions 829 

This paper introduces a novel member of the SPINEX (Similarity-based Predictions with Explainable 830 

Neighbors Exploration) family. This new algorithm enhances time series analysis performance by 831 

leveraging the concept of similarity, higher-order temporal interactions across multiple time scales, 832 

and explainability. The effectiveness of the proposed SPINEX variant was evaluated through a 833 

comprehensive benchmarking study involving 18 time series forecasting algorithms across 49 834 

datasets. Our findings from our experiments indicate that SPINEX consistently ranks within the top-835 

5 best-performing algorithms, showcasing its Pareto efficacy in time series forecasting and pattern 836 

recognition while maintaining moderate computational complexity on the order of O(log n). 837 

Moreover, the algorithm's explainability features, Pareto efficiency, and medium complexity are 838 

demonstrated through detailed visualizations to enhance the prediction and decision-making 839 

process. 840 

Despite the noted positive findings, there are several promising avenues for future research to 841 

further enhance SPINEX’s capabilities and applicability. To start with, this algorithm can be 842 

extended to handle multivariate time series, which could broaden its use cases. Second, while 843 

SPINEX dynamically adjusts its internal parameters, further exploration of adaptive mechanisms, 844 

such as reinforcement learning or metaheuristics, could dynamically optimize hyperparameters 845 

during runtime. It is also worth exploring options to further enhance the algorithmic scalability for 846 

large datasets by using sparse similarity matrices or approximate methods for computationally 847 

expensive metrics. We are hopeful to be able to imoprve the proposed algorithm in the near future. 848 

In the meantime, we also invite interested readers to spearhead the aforementioned items, as w 849 

Data Availability 850 

Some or all data, models, or code that support the findings of this study are available from the 851 

corresponding author upon reasonable request.  852 
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Appendix 1083 

The complete class of SPINEX is shown below. SPINEX can be installed via: pip install 1084 

spinex_timeseries 1085 

@jit(nopython= Tr ue)  1086 

def numba_ dtw(x, y): 1087 

    n, m = len(x), len(y) 1088 

    dtw_matrix = np.zeros((n+1, m+1)) 1089 

    for i in range(1, n+1): 1090 

        for j in range(1, m+1): 1091 

            cost = abs(x[i-1] - y[j-1]) 1092 

            dtw_matrix[i, j] = cost + min(dtw_matrix[i-1, j], dtw_matrix[i, j-1], dtw_matrix[i-1, j-1]) 1093 

    return dtw_matrix[n, m] 1094 

 1095 

@jit(nopython= Tr ue)  1096 

def numba_ dtw_ similar ity(X ):  1097 

    n = X.shape[0] 1098 

    sim_matrix = np.zeros((n, n)) 1099 

    for i in range(n): 1100 

        for j in range(i, n): 1101 

            dist = numba_dtw(X[i], X[j]) 1102 

            sim_matrix[i, j] = sim_matrix[j, i] = 1 / (1 + dist) 1103 

    return sim_matrix 1104 

 1105 

@jit(nopython= Tr ue)  1106 

def numba_ sample_ entr opy(x, m= 2, r = 0 .2):  1107 

    n = len(x) 1108 

    B = 0.0 1109 

    A = 0.0 1110 

    for i in range(n - m): 1111 

        for j in range(i + 1, n - m): 1112 

            matches = 0 1113 

            for k in range(m): 1114 

                if abs(x[i+k] - x[j+k]) <= r: 1115 

                    matches += 1 1116 

                else: 1117 

                    break 1118 

            if matches == m: 1119 

                B += 1 1120 

                if abs(x[i+m] - x[j+m]) <= r: 1121 

                    A += 1 1122 

    return -np.log((A + 1e-10) / (B + 1e-10)) 1123 

 1124 

def dir ection_ accur acy(segment1, segment2):  1125 

    direction1 = np.sign(np.diff(segment1)) 1126 
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    direction2 = np.sign(np.diff(segment2)) 1127 

    return np.mean(direction1 == direction2) 1128 

 1129 

c lass SP INEX_ Timeser ies: 1130 

    def _ _ init_ _ (self , data, window_ size= None, for ecast_ hor izon= 1, similar ity_ methods= None,  1131 

                dynamic_ window= Tr ue, multi_ level= Tr ue, dynamic_ thr eshold= Tr ue):  1132 

        self .data =  np.ar r ay(data)  1133 

        if window_size is None: 1134 

            self.window_size = max(10, len(data) // 10) 1135 

        else: 1136 

            self.window_size = min(window_size, len(data) // 2) 1137 

        self.forecast_horizon = min(forecast_horizon, len(data) // 10) 1138 

        self.forecast_horizon = forecast_horizon 1139 

        self.similarity_methods = similarity_methods if similarity_methods else ['cosine', 'euclidean', 'dtw']  1140 

        self.similarity_cache = {} 1141 

        self.dynamic_window = dynamic_window 1142 

        self.multi_level = multi_level 1143 

        self.dynamic_threshold = dynamic_threshold 1144 

        self.segments_cache = {} 1145 

        self.recent_errors = [] 1146 

        self.recent_similarity_scores = [] 1147 

        if self.dynamic_window: 1148 

            self.window_size = self.adaptive_window_size() 1149 

 1150 

    @staticmethod  1151 

    def hash_ ar r ay(ar r ): 1152 

        return hashlib.md5(arr.data.tobytes()).hexdigest() 1153 

 1154 

    @lr u_ cache(maxsize= 128)  1155 

    def get_ similar ity_ matr ix(self , method, segments_ hash):  1156 

        if (segments_hash, method) in self.similarity_cache: 1157 

            return self.similarity_cache[(segments_hash, method)] 1158 

        segments = self.segments_cache[segments_hash] 1159 

        if method == 'cosine': 1160 

            similarity_matrix = self.cosine_similarity(segments) 1161 

        elif method == 'correlation': 1162 

            similarity_matrix = self.correlation_similarity(segments) 1163 

        elif method == 'euclidean': 1164 

            similarity_matrix = self.euclidean_similarity(segments) 1165 

        elif method == 'spearman': 1166 

            similarity_matrix = self.spearman_similarity(segments) 1167 

        elif method == 'dtw': 1168 

            similarity_matrix = numba_dtw_similarity(segments) 1169 

        elif method == 'direction': 1170 

            similarity_matrix = self.direction_similarity(segments) 1171 
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        else: 1172 

            raise ValueError(f"Invalid similarity method: {method}") 1173 

        self.similarity_cache[(segments_hash, method)] = similarity_matrix 1174 

        return similarity_matrix 1175 

 1176 

    @staticmethod  1177 

    def cosine_ similar ity(X ):  1178 

        norm = np.linalg.norm(X, axis=1) 1179 

        return np.dot(X, X.T) / np.outer(norm, norm) 1180 

 1181 

    @staticmethod  1182 

    def cor r elation_ similar ity(X ):  1183 

        return np.corrcoef(X) 1184 

 1185 

    @staticmethod  1186 

    def euc l idean_ similar ity(X ):  1187 

        sq_dists = cdist(X, X, metric='euclidean')**2 1188 

        return 1 / (1 + np.sqrt(sq_dists)) 1189 

 1190 

    @staticmethod  1191 

    def spear man_ similar ity(X ):  1192 

        return spearmanr(X.T)[0] 1193 

 1194 

    def adjust_ dynamic_ par ameter s(self):  1195 

        MIN_WINDOW_SIZE = 10 1196 

        MAX_WINDOW_SIZE = len(self.data) // 2 1197 

        BASELINE_WINDOW_SIZE = max(MIN_WINDOW_SIZE, len(self.data) // 10) 1198 

        if len(self.data) > BASELINE_WINDOW_SIZE: 1199 

            volatility = np.std(self.data[-BASELINE_WINDO W_SIZE:]) 1200 

        else: 1201 

            volatility = np.std(self.data) 1202 

        scale_factor = np.clip(volatility, 0.1, 1.0)  # Limiting scale factor to avoid extreme values 1203 

        self.window_size = int(MAX_WINDOW_SIZE / scale_factor) 1204 

        self.window_size = max(MIN_WINDOW_SIZE, min(self.window_size, MAX_WINDOW_SIZE))  1205 

        if hasattr(self, 'recent_errors'): 1206 

            recent_error_mean = np.mean(self.recent_errors) 1207 

            recent_error_std = np.std(self.recent_errors) 1208 

            threshold_adjustment = recent_error_mean + recent_error_std 1209 

        else: 1210 

            threshold_adjustment = 0 1211 

        if hasattr(self, 'recent_similarity_scores') and self.recent_similarity_scores: 1212 

            mean_sim = np.mean(self.recent_similarity_scores) 1213 

            std_sim = np.std(self.recent_similarity_scores) 1214 

            self.threshold = mean_sim + std_sim + threshold_adjustment 1215 

        else: 1216 



This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.  

 

Please cite this paper as:  

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors 

exploration for time series and forecasting problems. Computers & Industrial 

Engineering. https://doi.org/10.1016/j.cie.2024.110812. 

 

51 

 

            self.threshold = 0.5  # Default threshold if no recent similarities are recorded 1217 

        print(f"Adjusted Window Size: {self.window_size}, Threshold: {self.threshold}")  1218 

 1219 

    def get_ dynamic_ thr eshold(self , similar ities):  1220 

        if self.dynamic_threshold: 1221 

            mean_sim = np.mean(similarities) 1222 

            std_sim = np.std(similarities) 1223 

            base_threshold = mean_sim + std_sim   1224 

            if len(similarities[similarities > base_threshold]) < 5: 1225 

                # If less than 5 indices are above threshold, reduce it to include more indices 1226 

                adjusted_threshold = np.percentile(similarities, 90)  # Adjusting percentile upward 1227 

            else: 1228 

                adjusted_threshold = base_threshold 1229 

            print(f"Dynamic Threshold Adjusted: {adjusted_threshold}") 1230 

            return adjusted_threshold 1231 

        else: 1232 

            return np.percentile(similarities, 95) 1233 

 1234 

    def adjusted_ dtw_ similar ity(self , X ):  1235 

        dtw_scores = numba_dtw_similarity(X) 1236 

        adjusted_scores = 1 / (1 + np.sqrt(dtw_scores))  # Squaring DTW scores for more lenience 1237 

        return adjusted_scores 1238 

 1239 

    def plot_ pr edic tion(self):  1240 

        predicted_values = self.predict() 1241 

        if predicted_values.size > 0: 1242 

            prediction_start_index = len(self.data) - self.forecast_horizon 1243 

            plt.figure(figsize=(12, 6)) 1244 

            plt.plot(self.data, label='Actual Time Series', color='blue') 1245 

            plt.plot(np.arange(prediction_start_index, len(self.data)), 1246 

                     self.data[prediction_start_index:], label='Actual (Prediction Window)', color='green')  1247 

            plt.plot(np.arange(prediction_start_index, len(self.data)), 1248 

                     predicted_values, label='Predicted', color='red', linestyle='--') 1249 

            plt.title('Time Series Prediction Comparison') 1250 

            plt.xlabel('Time Index') 1251 

            plt.ylabel('Values') 1252 

            plt.legend() 1253 

            plt.show() 1254 

        else: 1255 

            print("No valid predictions could be made.") 1256 

 1257 

    @lr u_ cache(maxsize= 32)  1258 

    def extr act_ segments(self , window_ size= None):  1259 

        if window_size is None: 1260 

            window_size = self.adaptive_window_size() 1261 



This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.  

 

Please cite this paper as:  

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors 

exploration for time series and forecasting problems. Computers & Industrial 

Engineering. https://doi.org/10.1016/j.cie.2024.110812. 

 

52 

 

        data_length = len(self.data) 1262 

        if data_length < window_size: 1263 

            print(f"Data length ({data_length}) is less than window size ({window_size}). Adjusting window size.")  1264 

            window_size = data_length // 2  # Use half of data length as window size 1265 

        n = data_length - window_size + 1 1266 

        if n <= 1: 1267 

            return np.array([self.data[-window_size:]]) 1268 

        segments = np.lib.stride_tricks.sliding_window_view(self.data, window_size)  1269 

        segment_means = np.mean(segments, axis=1) 1270 

        segment_stds = np.std(segments, axis=1) 1271 

        normalized_segments = (segments - segment_means[:, np.newaxis]) / (segment_stds[:, np.newaxis] + 1e-8) 1272 

        return normalized_segments 1273 

    def find_similar_segments(self): 1274 

        window_sizes = [self.window_size] 1275 

        if self.multi_level: 1276 

            window_sizes = [max(2, self.window_size // 2)] + window_sizes + [min(len(self.data) // 4, self.window_size * 1277 

2)] 1278 

        all_similarities = [] 1279 

        for w_size in window_sizes: 1280 

            segments = self.extract_segments(w_size) 1281 

            if len(segments) < 2: 1282 

                print(f"Not enough segments for window size {w_size}, skipping.") 1283 

                continue 1284 

            segments_hash = self.hash_array(segments) 1285 

            self.segments_cache[segments_hash] = segments 1286 

            method_similarities = [] 1287 

            for method in self.similarity_methods: 1288 

                if method == 'dtw' and len(segments) > 500: 1289 

                    print(f"DTW skipped for large dataset with {len(segments)} segments.") 1290 

                    continue 1291 

                try: 1292 

                    sim_matrix = self.get_similarity_matrix(method, segments_hash) 1293 

                    if sim_matrix.ndim > 1: 1294 

                        method_similarities.append(sim_matrix[-1, :-1]) 1295 

                    else: 1296 

                        method_similarities.append(sim_matrix[:-1]) 1297 

                except Exception as e: 1298 

                    print(f"Error calculating similarity for method {method}: {str(e)}") 1299 

            if not method_similarities: 1300 

                print(f"No valid similarity methods for window size {w_size}, skipping.")  1301 

                continue 1302 

            min_length = min(len(sim) for sim in method_similarities) 1303 

            method_similarities = [sim[-min_length:] for sim in method_similarities] 1304 

            method_similarities_array = np.array(method_similarities) 1305 

            overall_similarity = np.nanmean(method_similarities_array, axis=0) 1306 
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            all_similarities.append(overall_similarity) 1307 

        if not all_similarities: 1308 

            print("No similarities found for any window size. Using fallback similarity.")  1309 

            return self.fallback_similarity_method() 1310 

        min_length = min(len(s) for s in all_similarities) 1311 

        all_similarities = [s[-min_length:] for s in all_similarities] 1312 

        all_similarities_array = np.array(all_similarities) 1313 

        combined_similarities = np.nanmean(all_similarities_array, axis=0) 1314 

        return combined_similarities 1315 

 1316 

    def fal lback_ similar ity_ method(self):  1317 

        # Simple autocorrelation-based similarity 1318 

        acf = np.correlate(self.data, self.data, mode='full')[len(self.data)-1:] 1319 

        return acf / acf[0]  # Normalize 1320 

 1321 

    def analyze_ segment_ similar ity(self , segment_ index):  1322 

        current_segment = self.extract_segments(self.window_size)[-1] 1323 

        historical_segment = self.extract_segments(self.window_size)[segment_index] 1324 

        similarity_scores = {} 1325 

        for method in self.similarity_methods: 1326 

            if method == 'cosine': 1327 

                score = np.dot(current_segment, historical_segment) / (np.linalg.norm(current_segment) * 1328 

np.linalg.norm(historical_segment)) 1329 

            elif method == 'euclidean': 1330 

                score = 1 / (1 + np.linalg.norm(current_segment - historical_segment)) 1331 

            elif method == 'dtw': 1332 

                score = 1 / (1 + numba_dtw(current_segment, historical_segment))  # Use the global function 1333 

            similarity_scores[method] = score 1334 

        feature_contributions = np.abs(current_segment - historical_segment) 1335 

        top_contributing_features = np.argsort(feature_contributions)[::-1][:5] 1336 

        return { 1337 

            'similarity_scores': similarity_scores, 1338 

            'top_contributing_features': top_contributing_features.tolist(), 1339 

            'feature_contributions': feature_contributions.tolist() 1340 

        } 1341 

 1342 

    def get_ near est_ neighbor s(self , k= 5):  1343 

        similarities = self.find_similar_segments() 1344 

        nearest_indices = np.argsort(similarities)[::-1][:k] 1345 

        return [(idx, similarities[idx]) for idx in nearest_indices] 1346 

 1347 

    def dtw_ similar ity(self , X ):  1348 

        return numba_dtw_similarity(X)  # Use the global function 1349 

 1350 

    def adaptive_ window_ size(self):  1351 



This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.  

 

Please cite this paper as:  

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors 

exploration for time series and forecasting problems. Computers & Industrial 

Engineering. https://doi.org/10.1016/j.cie.2024.110812. 

 

54 

 

        data_length = len(self.data) 1352 

        if data_length < 100: 1353 

            base_window = max(2, data_length // 20) 1354 

        elif data_length < 1000: 1355 

            base_window = max(5, data_length // 40) 1356 

        else: 1357 

            base_window = max(25, data_length // 80) 1358 

        potential_seasons = self.detect_seasonality() 1359 

        variability = np.std(self.data) / (np.mean(self.data) + 1e-8) 1360 

        if potential_seasons: 1361 

            window = min(max(potential_seasons), base_window) 1362 

        else: 1363 

            window = int(base_window * (1 + variability)) 1364 

        return max(2, min(window, data_length // 8))  # Ensure window is at most 1/8 of data length 1365 

 1366 

    def detect_ seasonality(self , max_ lag= None):  1367 

        if max_lag is None: 1368 

            max_lag = len(self.data) // 2 1369 

        acf = np.correlate(self.data, self.data, mode='full')[-max_lag:] 1370 

        peaks = np.where((acf[1:-1] > acf[:-2]) & (acf[1:-1] > acf[2:]))[0] + 1 1371 

        if len(peaks) > 0: 1372 

            return [int(peaks[0])]  # Return a list with the first peak 1373 

        return []  # Return an empty list if no peaks found 1374 

    def detect_anomalies(self, threshold_percentile=2): 1375 

        segments = self.extract_segments(self.window_size) 1376 

        similarities = self.find_similar_segments() 1377 

        threshold = np.percentile(similarities, threshold_percentile) 1378 

        anomaly_indices = np.where(similarities < threshold)[0] 1379 

        anomalies = [] 1380 

        for idx in anomaly_indices: 1381 

            start = idx 1382 

            end = idx + self.window_size 1383 

            anomalies.append({ 1384 

                'start_index': start, 1385 

                'end_index': end, 1386 

                'segment': self.data[start:end].tolist(), 1387 

                'similarity_score': similarities[idx] 1388 

            }) 1389 

        return anomalies, threshold 1390 

 1391 

    def plot_ anomalies(self , thr eshold_ per centi le= 5):  1392 

        anomalies, threshold = self.detect_anomalies(threshold_percentile) 1393 

        plt.figure(figsize=(12, 6)) 1394 

        plt.plot(self.data, label='Time Series', color='blue') 1395 

        for anomaly in anomalies: 1396 
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            plt.axvspan(anomaly['start_index'], anomaly['end_index'], color='red', alpha=0.3)  1397 

        plt.title(f'Time Series with Detected Anomalies (Threshold: {threshold:.4f})')  1398 

        plt.xlabel('Time Index') 1399 

        plt.ylabel('Values') 1400 

        plt.legend() 1401 

        if not anomalies: 1402 

            plt.text(0.5, 0.5, 'No anomalies detected', horizontalalignment='center', 1403 

                    verticalalignment='center', transform=plt.gca().transAxes) 1404 

        else: 1405 

            print(f"Detected {len(anomalies)} anomalies") 1406 

        plt.show() 1407 

 1408 

        similarities = self.find_similar_segments() 1409 

        print(f"Similarity score range: {similarities.min():.4f} to {similarities.max():.4f}")  1410 

        print(f"Similarity score mean: {similarities.mean():.4f}") 1411 

        print(f"Similarity score median: {np.median(similarities):.4f}") 1412 

        print(f"Anomaly threshold: {threshold:.4f}") 1413 

 1414 

    def calculate_ mean_ squar ed_ er r or (self , ac tual, pr edic ted):  1415 

        return np.mean((actual - predicted) ** 2) 1416 

 1417 

    def calculate_ basic_ similar ity(self , ac tual, pr edic ted):  1418 

        # Ensuring that neither actual nor predicted are empty to avoid runtime errors 1419 

        if actual.size == 0 or predicted.size == 0: 1420 

            return np.nan 1421 

        correlation = np.corrcoef(actual, predicted)[0, 1] 1422 

        return correlation 1423 

 1424 

    def fal lback_ pr edic tion(self , num_ points):  1425 

        if len(self.data) < num_points * 2: 1426 

            raise ValueError("Insufficient data for prediction") 1427 

        def adaptive_window(data): 1428 

            def mse(window): 1429 

                trend = extract_trend(data, int(window)) 1430 

                return np.mean((data[int(window)-1:] - trend)**2) 1431 

            result = minimize_scalar(mse, bounds=(10, len(data)//2), method='bounded')  1432 

            return int(result.x) 1433 

 1434 

        def extr act_ tr end(data, window_ size):  1435 

            return np.convolve(data, np.ones(window_size), 'valid') / window_size 1436 

 1437 

        def detect_ seasonalities(data, max_ per iod, num_ seasons= 2):  1438 

            correlations = [np.corrcoef(data[:-i], data[i:])[0, 1] for i in range(1, max_period)] 1439 

            seasons = [] 1440 

            for _ in range(num_seasons): 1441 
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                if len(correlations) > 0: 1442 

                    season = np.argmax(correlations) + 1 1443 

                    seasons.append(season) 1444 

                    correlations[season-1] = -1  # Remove detected season 1445 

            return seasons 1446 

 1447 

        def model_ nonlinear _ tr end(data, x):  1448 

            coeffs = np.polyfit(x, data, 3) 1449 

            return np.poly1d(coeffs) 1450 

 1451 

        def detect_ anomalies(data, thr eshold= 3):  1452 

            mean = np.mean(data) 1453 

            std = np.std(data) 1454 

            return np.abs(data - mean) > threshold * std 1455 

        window_size = adaptive_window(self.data) 1456 

        trend = extract_trend(self.data, window_size) 1457 

        detrended = self.data[window_size-1:] - trend 1458 

        seasonality_periods = detect_seasonalities(detrended, num_points) 1459 

        seasonals = [] 1460 

        for period in seasonality_periods: 1461 

            seasonal = np.zeros(period) 1462 

            for i in range(period): 1463 

                seasonal[i] = np.mean(detrended[i::period]) 1464 

            seasonals.append(seasonal) 1465 

        combined_seasonal = np.zeros_like(detrended) 1466 

        for seasonal in seasonals: 1467 

            combined_seasonal += np.tile(seasonal, len(detrended) // len(seasonal) + 1)[:len(detrended)]  1468 

        residuals = detrended - combined_seasonal[:len(detrended)] 1469 

        anomalies = detect_anomalies(residuals) 1470 

        cleaned_residuals = residuals.copy() 1471 

        cleaned_residuals[anomalies] = np.median(residuals) 1472 

        x = np.arange(len(self.data)) 1473 

        trend_model = model_nonlinear_trend(self.data, x) 1474 

        future_x = np.arange(len(self.data), len(self.data) + self.forecast_horizon) 1475 

        future_trend = trend_model(future_x) 1476 

        future_seasonal = np.zeros(self.forecast_horizon) 1477 

        for seasonal in seasonals: 1478 

            future_seasonal += np.tile(seasonal, self.forecast_horizon // len(seasonal) + 1)[:self.forecast_horizon]  1479 

 1480 

        def pr edic t_ r esiduals_ with_ c i(r esiduals, hor izon, confidence= 0.95):  1481 

            weights = np.exp(np.linspace(-1, 0, len(residuals))) 1482 

            weighted_mean = np.sum(residuals * weights) / np.sum(weights) 1483 

            weighted_std = np.sqrt(np.sum(weights * (residuals - weighted_mean)**2) / np.sum(weights)) 1484 

            predictions = np.random.normal(weighted_mean, weighted_std, (1000, horizon))  1485 

            mean_prediction = np.mean(predictions, axis=0) 1486 
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            ci_lower = np.percentile(predictions, (1 - confidence) / 2 * 100, axis=0) 1487 

            ci_upper = np.percentile(predictions, (1 + confidence) / 2 * 100, axis=0)  1488 

            return mean_prediction, ci_lower, ci_upper 1489 

        future_residuals, ci_lower, ci_upper = predict_residuals_with_ci(cleaned_residuals, self.forecast_horizon) 1490 

        predictions = future_trend + future_seasonal + future_residuals 1491 

        ci_lower += future_trend + future_seasonal 1492 

        ci_upper += future_trend + future_seasonal 1493 

        return predictions, ci_lower, ci_upper 1494 

 1495 

    def tune_ hyper par ameter s(self):  1496 

        # Example: tune the number of seasonalities to detect 1497 

        best_num_seasons = 1 1498 

        best_mse = float('inf') 1499 

        for num_seasons in range(1, 5): 1500 

            predictions, _, _ = self.fallback_prediction(num_points=20) 1501 

            mse = np.mean((self.data[-len(predictions):] - predictions)**2) 1502 

            if mse < best_mse: 1503 

                best_mse = mse 1504 

                best_num_seasons = num_seasons 1505 

        return {'num_seasons': best_num_seasons} 1506 

 1507 

    def pr edic t(self): 1508 

        self.adjust_dynamic_parameters() 1509 

        try: 1510 

            similarities = self.find_similar_segments() 1511 

            if len(similarities) == 0: 1512 

                print("No similarities found. Using fallback prediction.") 1513 

                return self.fallback_prediction(self.forecast_horizon)[0] 1514 

            threshold = self.get_dynamic_threshold(similarities) 1515 

            valid_indices = [] 1516 

            for percentile in range(95, 70, -5):  # Start at 95th percentile, go down to 70th 1517 

                top_indices = np.where(similarities > np.percentile(similarities, percentile))[0]  1518 

                valid_indices = top_indices[top_indices + self.window_size + self.forecast_horizon <= len(self.data)] 1519 

                if len(valid_indices) >= 3: 1520 

                    break 1521 

            if len(valid_indices) == 0: 1522 

                print("No valid indices found. Using fallback prediction.") 1523 

                return self.fallback_prediction(self.forecast_horizon)[0] 1524 

            predictions = [] 1525 

            weights = [] 1526 

            for idx in valid_indices: 1527 

                start = idx + self.window_size 1528 

                end = start + self.forecast_horizon 1529 

                if end <= len(self.data): 1530 

                    segment = self.data[start:end] 1531 
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                    predictions.append(segment) 1532 

                    weights.append(similarities[idx]) 1533 

            if predictions: 1534 

                min_length = min(len(p) for p in predictions) 1535 

                predictions = [p[:min_length] for p in predictions] 1536 

                predictions = np.array(predictions) 1537 

                weights = np.array(weights) 1538 

                last_actual = self.data[-1] 1539 

                for i in range(len(predictions)): 1540 

                    shift = last_actual - predictions[i][0] 1541 

                    predictions[i] += shift 1542 

                predicted_values = np.average(predictions, axis=0, weights=weights) 1543 

            else: 1544 

                print("No valid predictions. Using fallback prediction.") 1545 

                predicted_values = self.fallback_prediction(self.forecast_horizon)[0]  1546 

        except Exception as e: 1547 

            print(f"Error in predict: {str(e)}") 1548 

            predicted_values = self.fallback_prediction(self.forecast_horizon)[0]  # Return only predictions, not CI 1549 

        if predicted_values.size > 0: 1550 

            actual_values = self.data[-len(predicted_values):] 1551 

            prediction_error = self.calculate_mean_squared_error(actual_values, predicted_values)  1552 

            recent_similarity_score = self.calculate_basic_similarity(actual_values, predicted_values)  1553 

            self.update_recent_performance(prediction_error, recent_similarity_score) 1554 

        else: 1555 

            self.update_recent_performance(np.nan, np.nan) 1556 

        return predicted_values 1557 

 1558 

    def update_ r ecent_ per for mance(self , new_ er r or , new_ similar ity_ scor e):  1559 

        self.recent_errors.append(new_error) 1560 

        self.recent_similarity_scores.append(new_similarity_score) 1561 

        # Optionally, trim these lists to avoid unlimited growth 1562 

        self.recent_errors = self.recent_errors[-100:]  # Keep the last 100 records 1563 

        self.recent_similarity_scores = self.recent_similarity_scores[-100:] 1564 

 1565 

    def evaluate_ pr edic tion(self , ac tual, pr edic ted):  1566 

        if len(actual) != len(predicted): 1567 

            raise ValueError("Actual and predicted arrays must have the same length.") 1568 

        if len(actual) == 0: 1569 

            return {metric: np.nan for metric in ['MSE', 'MAE', 'RMSE', 'MAPE', 'SMAPE', 'R-squared', 'Direction Accuracy', 1570 

'Theil\'s U']} 1571 

        mse = np.mean((actual - predicted) ** 2) 1572 

        mae = np.mean(np.abs(actual - predicted)) 1573 

        rmse = np.sqrt(mse) 1574 

        mape = np.mean(np.abs((actual - predicted) / (actual + 1e-8))) * 100 1575 

        smape = np.mean(2 * np.abs(predicted - actual) / (np.abs(actual) + np.abs(predicted) + 1e-8)) * 100 1576 
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        r2 = r2_score(actual, predicted) 1577 

        direction_actual = np.sign(np.diff(actual)) 1578 

        direction_pred = np.sign(np.diff(predicted)) 1579 

        direction_accuracy = np.mean(direction_actual == direction_pred) * 100  1580 

        actual_changes = np.diff(actual) 1581 

        predicted_changes = np.diff(predicted) 1582 

        theil_u = np.sqrt(np.sum(predicted_changes**2) / np.sum(actual_changes**2)) if np.sum(actual_changes**2) != 1583 

0 else np.nan 1584 

        return { 1585 

            'MSE': mse, 'MAE': mae, 'RMSE': rmse, 'MAPE': mape, 'SMAPE': smape, 1586 

            'R-squared': r2, 'Direction Accuracy': direction_accuracy, 'Theil\'s U': theil_u 1587 

        } 1588 

 1589 

    def val idate_ pr edic tion(self , spl its= 3):  1590 

            n_samples = len(self.data) 1591 

            max_splits = (n_samples - self.window_size) // self.forecast_horizon 1592 

            splits = min(splits, max_splits) 1593 

            if splits < 2: 1594 

                print("Warning: Not enough data for multiple splits. Performing single train-test split.") 1595 

                train_size = int(0.8 * n_samples) 1596 

                train, test = self.data[:train_size], self.data[train_size:] 1597 

                self.data = train 1598 

                self.similarity_cache = {} 1599 

                predicted = self.predict() 1600 

                if predicted.size > 0: 1601 

                    actual = test[:len(predicted)] 1602 

                    metrics = self.evaluate_prediction(actual, predicted) 1603 

                    self.data = np.concatenate((train, test))  # Restore original data 1604 

                    return metrics 1605 

                else: 1606 

                    print("Insufficient data to make a prediction.") 1607 

                    return None 1608 

            tscv = TimeSeriesSplit(n_splits=splits, test_size=self.forecast_horizon) 1609 

            errors = [] 1610 

            for train_index, test_index in tscv.split(self.data): 1611 

                if len(train_index) < self.window_size: 1612 

                    print(f"Warning: Train set too small for window size. Skipping split.")  1613 

                    continue 1614 

                train, test = self.data[train_index], self.data[test_index] 1615 

                original_data = self.data 1616 

                self.data = train 1617 

                self.similarity_cache = {} 1618 

                predicted = self.predict() 1619 

                if predicted.size > 0: 1620 

                    actual = test[:len(predicted)] 1621 
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                    metrics = self.evaluate_prediction(actual, predicted) 1622 

                    errors.append(metrics) 1623 

                else: 1624 

                    print("Insufficient data to predict for this split.") 1625 

                self.data = original_data 1626 

            if errors: 1627 

                avg_metrics = {metric: np.mean([e[metric] for e in errors if metric in e]) for metric in errors[0]}  1628 

                return avg_metrics 1629 

            else: 1630 

                print("No valid predictions could be made across splits.") 1631 

                return None 1632 

 1633 

    def get_ explainabi l ity_ r esults(self , top_ k= 5):  1634 

        similarities = self.find_similar_segments() 1635 

        threshold = self.get_dynamic_threshold(similarities) 1636 

        top_indices = np.where(similarities > threshold)[0] 1637 

        if len(top_indices) == 0: 1638 

            top_indices = np.argsort(similarities)[-top_k:] 1639 

        results = { 1640 

            'top_similar_segments': top_indices.tolist(), 1641 

            'similarity_scores': similarities[top_indices].tolist(), 1642 

            'threshold': threshold, 1643 

            'segment_contributions': [] 1644 

        } 1645 

        predictions = [] 1646 

        valid_indices = [] 1647 

        for idx in top_indices: 1648 

            start = idx + self.window_size 1649 

            if start + self.forecast_horizon <= len(self.data): 1650 

                predictions.append(self.data[start:start + self.forecast_horizon]) 1651 

                valid_indices.append(idx) 1652 

        if not predictions: 1653 

            return results 1654 

        predictions = np.array(predictions) 1655 

        weights = similarities[valid_indices] 1656 

        weighted_predictions = predictions * weights[:, np.newaxis] 1657 

        for i, (index, score, prediction, contribution) in enumerate(zip(valid_indices, similarities[valid_indices], 1658 

predictions, weighted_predictions)): 1659 

            results['segment_contributions'].append({ 1660 

                'segment_index': int(index), 1661 

                'similarity_score': float(score), 1662 

                'prediction': prediction.tolist(), 1663 

                'weighted_contribution': contribution.tolist(), 1664 

                'contribution_percentage': (contribution / np.sum(weighted_predictions, axis=0) * 100).tolist()  1665 

            }) 1666 
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        return results 1667 

 1668 

    def plot_ near est_ neighbor s(self , k= 5):  1669 

        current_segment = self.extract_segments(self.window_size)[-1] 1670 

        neighbors = self.get_nearest_neighbors(k) 1671 

        plt.figure(figsize=(15, 10)) 1672 

        plt.subplot(k+1, 1, 1) 1673 

        plt.plot(current_segment, color='blue', label='Current Segment') 1674 

        plt.title('Current Segment') 1675 

        plt.legend() 1676 

        for i, (idx, similarity) in enumerate(neighbors, start=2): 1677 

            neighbor_segment = self.extract_segments(self.window_size)[idx] 1678 

            plt.subplot(k+1, 1, i) 1679 

            plt.plot(neighbor_segment, color='red', label=f'Neighbor {i-1}') 1680 

            plt.title(f'Neighbor {i-1} (Similarity: {similarity:.4f})') 1681 

            plt.legend() 1682 

        plt.tight_layout() 1683 

        plt.show() 1684 

 1685 

    def analyze_ and_ plot_ neighbor s(self , k= 5):  1686 

        current_segment = self.extract_segments(self.window_size)[-1] 1687 

        neighbors = self.get_nearest_neighbors(k) 1688 

        plt.figure(figsize=(20, 5*k)) 1689 

        plt.subplot(k+1, 2, 1) 1690 

        plt.plot(current_segment, color='blue', label='Current Segment') 1691 

        plt.title('Current Segment') 1692 

        plt.legend() 1693 

        for i, (idx, overall_similarity) in enumerate(neighbors, start=1): 1694 

            neighbor_segment = self.extract_segments(self.window_size)[idx] 1695 

            analysis = self.analyze_segment_similarity(idx) 1696 

            plt.subplot(k+1, 2, 2*i+1) 1697 

            plt.plot(neighbor_segment, color='red', label=f'Neighbor {i}')  1698 

            plt.title(f'Neighbor {i} (Overall Similarity: {overall_similarity:.4f})')  1699 

            plt.legend() 1700 

            plt.subplot(k+1, 2, 2*i+2) 1701 

            methods = list(analysis['similarity_scores'].keys()) 1702 

            scores = list(analysis['similarity_scores'].values()) 1703 

            plt.bar(methods, scores) 1704 

            plt.title(f'Similarity Scores for Neighbor {i}') 1705 

            plt.ylim(0, 1) 1706 

            print(f"\nNeighbor {i} Analysis:") 1707 

            print(f"Overall Similarity: {overall_similarity:.4f}") 1708 

            print("Similarity Scores:") 1709 

            for method, score in analysis['similarity_scores'].items(): 1710 

                print(f"  {method}: {score:.4f}") 1711 
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            print("Top Contributing Features:", analysis['top_contributing_features'])  1712 

        plt.tight_layout() 1713 

        plt.show() 1714 

 1715 


