
This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

1

SPINEX-TimeSeries: Similarity-based Predictions with Explainable Neighbors 1

Exploration for Time Series and Forecasting Problems 2

Ahmed Z. Naser1, M.Z. Naser2,3 3
1Department of Mechanical Engineering, University of Manitoba, Canada , E-mail: a .naser@umanitoba.ca 4

2School of Civil & Environmental Engineering and Earth Sciences (SCEEES), Clemson University, USA 5
3Artificial Intelligence Research Institute for Science and Engineering (AIRISE), Clemson University, USA 6

E-mail: mznaser@clemson.edu, Website: www.mznaser.com 7

Abstract 8

This paper introduces a new addition to the SPINEX (Similarity-based Predictions with Explainable 9

Neighbors Exploration) family, tailored specifically for time series and forecasting analysis. This 10

new algorithm leverages the concept of similarity and higher-order temporal interactions across 11

multiple time scales to enhance predictive accuracy and interpretability in forecasting. To evaluate 12

the effectiveness of SPINEX, we present comprehensive benchmarking experiments comparing it 13

against 18 algorithms and across 49 synthetic and real datasets characterized by varying trends, 14

seasonality, and noise levels. Our performance assessment focused on forecasting accuracy and 15

computational efficiency. Our findings reveal that SPINEX consistently ranks among the top 5 16

performers in forecasting precision and has a superior ability to handle complex temporal 17

dynamics compared to commonly adopted algorithms. Moreover, the algorithm's explainability 18

features, Pareto efficiency, and medium complexity (on the order of O(log n)) are demonstrated 19

through detailed visualizations to enhance the prediction and decision-making process. We note 20

that integrating similarity-based concepts opens new avenues for research in predictive analytics, 21

promising more accurate and transparent decision making. 22

Keywords: Algorithm; Machine learning; Benchmarking; Time series; Forecasting. 23

1.0 Introduction 24

Time series analysis involves the study of data collected or recorded sequentially over time to 25

extract meaningful patterns, trends, and insights [1]. Such a temporal ordering of data distinguishes 26

time series from cross-sectional data and necessitates specialized techniques to understand the 27

underlying mechanisms that generate the observed data and to forecast future values based on 28

historical patterns. In other words, time series analysis inherently focuses on temporal data, with 29

applications aiming to understand past behaviors, predict future trends, and identify cyclical 30

patterns as well as anomalies. Such applications can span diverse domains, from financial 31

forecasting to environmental modeling, etc. [2]. 32

Given that a core component of time series analysis builds on forecasting future predictions from 33

past trends/responses, the concept of similarity in time series then arises [3]. Similarity in this 34

context refers to the degree of resemblance or correspondence between different segments of a 35

single time series or between multiple time series [4]. The quantification of similarity enables 36

researchers and practitioners to identify recurring patterns, classify time series into groups with 37

similar characteristics, and detect deviations from expected behavior. In a way, similarity may 38

mailto:a.naser@umanitoba.ca
mailto:mznaser@clemson.edu
http://www.mznaser.com/

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

2

enable the establishment of a notion of "normal" behavior, which can then help identify instances 39

that exhibit low similarity to these reference patterns (i.e., anomalies). Thus, the notion of 40

similarity can be particularly significant in pattern recognition, anomaly detection, and clustering 41

[5]. 42

In parallel, this concept is not only about finding sequences that look alike but also aims to 43

understand temporal alignment and variation between data points. For example, two economic 44

time series might exhibit similar patterns of growth and recession cycles but shift in time or at 45

different scales. Accurately measuring such similarities involves techniques that consider 46

alignment and scaling of time data instead of standard distance metrics [6]. This can be apparent 47

in the case of traditional metrics like Euclidean and Manhattan distances, as these quantify 48

similarity by measuring the distances between points in a time series. However, these measures 49

often fall short of capturing the dynamic characteristics of time series data, such as trends and 50

seasonality [7]. The same measures also tend to be sensitive to small fluctuations, which can be 51

misleading in a temporal context where trends and cycles play a significant role [8]. 52

As one can see, unlike static data, where similarity can often be measured using straightforward 53

distance metrics, time series data presents additional complexities stemming from the observations' 54

temporal nature. Consequently, specialized similarity measures have been developed to address 55

these challenges, each with its own strengths and limitations. For instance, Dynamic Time 56

Warping (DTW) allows elastic transformations of the time [9]. DTW also allows for non-linear 57

alignment of time series and hence can accommodate differences in speed and duration of patterns. 58

Thus, DTW can align two sequences in a way that minimizes their overall distance. This method 59

is particularly effective in dealing with time series that are similar in shape but vary in speed or 60

timing of events where temporal alignment is fundamental, such as speech recognition and 61

bioinformatics [10,11]. 62

Another similarity-based concept is the Longest Common Subsequence (LCSS), which measures 63

the similarity between two sequences by identifying the longest subsequence present in both 64

sequences without altering the order of elements [12]. LCSS can be robust to noise and occlusions 65

and is particularly useful in real-time series applications where missing values may occur. Another 66

approach to quantifying similarity in time series is through the use of feature-based methods and 67

correlation measures. The former methods involve extracting relevant features or summary 68

statistics from the time series and comparing these derived representations rather than the raw data 69

points, including statistical moments, frequency domain characteristics, and model parameters. 70

The latter measures, such as Pearson's or Spearman’s correlation coefficients etc., capture the 71

degree of relationship/association between time series. Both techniques have proven useful yet 72

may fail to capture non-linear relationships and are sensitive to outliers and phase differences 73

[13,14]. 74

More recently, machine learning (ML) advancements have introduced new models for assessing 75

similarity in time series data. Techniques such as Siamese and triplet networks learn similarity 76

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

3

metrics directly from data, potentially capturing complex, non-linear relationships that traditional 77

approaches might miss [15]. Furthermore, methods like K-Nearest Neighbors (KNN) for time 78

series rely on identifying similar historical patterns to make predictions about future values. More 79

sophisticated approaches, such as Long Short-Term Memory (LSTM) networks, can now 80

implicitly learn to recognize and utilize similar patterns in their internal representations [16]. A 81

key component that remains opaque in ML-based methods is their blackbox nature and limited 82

interpretability [17]. 83

It can then be inferred that the concept of similarity, as well as explainability, can be thought of as 84

elemental to forecasting tasks. Thus, this paper presents the development of the time series variant 85

to the SPINEX (Similarity-based Predictions with Explainable Neighbors Exploration) family. This 86

variant builds upon the concept of similarity and explainability between similarly-identify 87

neighbors and segments. As such, SPINEX hopes to bridge some of the existing challenges. In this 88

study, we examine the algorithm’s ability to perform on 49 diverse datasets compared to 18 89

commonly used algorithms. 90

2.0 Description of the SPINEX for time series and forecasting 91

2.1 General description 92

SPINEX represents a unique approach to time series analysis and prediction. This algorithm 93

integrates multiple techniques to deliver robust, adaptive, and interpretable time series forecasting. 94

For example, at its core, SPINEX employs a multi-method similarity analysis, utilizing various 95

measures such as cosine similarity, Euclidean distance, DTW, Pearson, and Spearman correlation. 96

This ensemble approach enables a comprehensive assessment of segment similarities, capturing 97

diverse aspects of time series behavior. A key feature of SPINEX is its adaptive window sizing 98

mechanism, which adjusts based on data length, variability, and potential seasonality. This 99

adaptability allows the algorithm to handle time series of varying lengths and characteristics 100

effectively. Additionally, SPINEX implements time series cross-validation to provide robust 101

performance estimates and assess model stability across different time periods. 102

SPINEX's multi-level analysis capability provides a hierarchical view of time series patterns to 103

enable robustness to different scales of temporal dependencies. Furthermore, SPINEX incorporates 104

a dynamic thresholding technique for anomaly detection and forecasting validation. This method 105

adjusts the similarity threshold based on the recent performance of the predictions and the 106

distribution of similarity scores, which further enhances the algorithm's flexibility and 107

responsiveness to changing patterns in the data. The same can be crucial for understanding outliers 108

and potential regime changes in the data. Thus, SPINEX effectively identifies the most relevant 109

segments for making predictions to improve the reliability of the forecast. In cases where 110

accessible similarity-based prediction is not feasible, the algorithm switches to a fallback 111

prediction method, which includes trend extraction, multiple seasonality detection, non-linear 112

trend modeling, and anomaly-aware residual prediction with confidence intervals. 113

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

4

As mentioned above, SPINEX focuses on explainability by offering detailed results on the most 114

similar historical segments, their contributions to the prediction, and visualizations of the nearest 115

neighboring similar segments. This enhances understanding of the prediction process and the 116

underlying patterns in the data. Computational efficiency within SPINEX is achieved through the 117

use of techniques like numba for just-in-time compilation and caching mechanisms. For 118

completion, a representative pseudo-code is provided below. 119

Input: 120

 data: Time series data 121

 window_size (optional): Length of each segment 122

 forecast_horizon: Number of future steps to predict 123

 similarity_methods: List of similarity methods (e.g., 'cosine', 'euclidean', 'dtw', etc.) 124

 dynamic_window: Flag to enable adaptive window sizing 125

 multi_level: Flag to enable multi-level similarity analysis 126

 dynamic_threshold: Flag to enable dynamic threshold adjustments 127

O utput: 128

 Predicted future values of the time series 129

 Identified anomalies (if applicable) 130

 Explainability insights for predictions 131

Pr ocedur e: 132

1. In itial ization : 133

 - Convert `data` to a numpy array. 134

 - Set `window_size` to default or provided value. 135

 - Set default similarity methods and initialize caches. 136

2. Dynamic Par ameter Adjustment (i f `dynamic_ window` or `dynamic_ thr eshold` is enabled): 137

 - Calculate volatility or variability in recent data. 138

 - Adjust `window_size` based on variability and predefined bounds. 139

 - Calculate dynamic threshold for similarity scores based on recent errors and scores. 140

3. Segment Extr action: 141

 - Slide a window of size `window_size` across the data to extract overlapping segments. 142

 - Normalize each segment (mean = 0, std = 1). 143

4. Similar ity Matr ix Calculation: 144

 - For each specified similarity method: 145

 - Compute pairwise similarity scores between segments using: 146

 - Cosine similarity 147

 - Euclidean similarity 148

 - DTW (Dynamic Time Warping) 149

 - Other specified methods 150

 - Cache results for reuse. 151

5. Find Similar Segments : 152

 - Evaluate similarity scores for segments using all methods. 153

 - Combine results across methods to compute an overall similarity score. 154

6. Pr edic tion: 155

 - Identify top similar segments based on overall similarity score. 156

 - Use weights derived from similarity scores to combine predictions. 157

 - If no valid predictions are possible, use a fallback method (e.g., seasonal decomposition or trend modeling). 158

7. Anomaly Detection (O ptional): 159

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

5

 - Define a threshold for similarity scores (dynamic or static). 160

 - Identify segments with scores below the threshold as anomalies. 161

8. Explainabi l ity Analysis (O ptional): 162

 - Analyze contributions of features to similarity scores. 163

 - Identify top-contributing features for each similar segment. 164

 - Compute weighted contributions of segments to predictions. 165

9. Evaluation: 166

 - Evaluate prediction accuracy using metrics such as MSE, RMSE, MAE, R², etc. 167

 - Validate predictions across multiple train-test splits if required. 168

10. Visual ization (O ptional): 169

 - Plot predictions alongside actual time series data. 170

- Highlight anomalies or visualize top similar segments and their contributions. 171

End Algor ithm 172

2.2 Detailed description 173

A more detailed description of SPINEX’s methods and functions is provided herein. It is worth 174

noting that the presented default settings were arrived at from an empirical analysis of the 49 175

datasets examined in this paper (obtained from synthetic and real datasets). 176

Initia l ization (__init__) 177

The __init__ method initializes and sets up the operational parameters of SPINEX. The method 178

signature is as follows: 179

 def __init__(self, data, window_size=None, forecast_horizon=1, similarity_methods=None, 180

 dynamic_window=True, multi_level=True, dynamic_threshold=True): 181

More specifically: 182

• data: The input time series data, converted into a NumPy array for efficient numerical operations. 183

• window_size: Determines the length of the segments to be compared. If not specified, it is set to the greater 184

of 10 or one-tenth of the data length. This parameter can be dynamically adjusted based on the data's 185

volatility. 186

• for ecast_ hor izon: Specifies how far into the future predictions are made. By default, it is the smaller of the 187

provided value and one-tenth of the data length. 188

• similarity_ methods: A list of methods used to compute similarity between segments. Defaults to ['cosine', 189

'euclidean', 'dtw'] if not specified. 190

• dynamic_window: Enables or disables dynamic adjustment of the window size based on data characteristics. 191

• multi_ level: Allows the use of multiple window sizes in the analysis to capture different scales of patterns. 192

• dynamic_threshold: Enables adaptive thresholding in the similarity calculations to improve forecast 193

reliability. 194

• Additionally, the class uses caching mechanisms (similarity_cache and segments_cache) to store computed 195

results for re-use to optimize performance for large datasets. 196

Method: Simi lar ity Measures 197

This method offers several methods to compute the similarity between time series segments: 198

• Cosine Similar ity : 199

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

6

o Computes the cosine of the angle between two vectors and is defined as the dot product of the 200

vectors divided by the product of their norms. This measure is effective in identifying the 201

similarity in direction regardless of magnitude. 202

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑋⋅𝑋𝑇

∥𝑋∥∥𝑋𝑇 ∥
 203

• Cor r elation Similar ity : 204

o Calculates the Pearson correlation coefficient matrix of the rows of X, providing a measure of 205

linear relationships between segments. 206

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = corrcoef(X) 207

• Euc l idean Similar ity : 208

o Uses the Euclidean distance to compute similarity by applying a transformation that inversely 209

relates distance to similarity. 210

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
1

1+√𝑐𝑑𝑖𝑠𝑡 (𝑋,𝑋,Euclidean)2
 211

• Spear man Similar ity : 212

o Calculates the Spearman rank correlation between the columns of X, useful for capturing 213

monotonic relationships between segments that may not necessarily be linear. 214

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = spearmanr (𝑋𝑇)[0] 215

• Dynamic Time War ping (DTW) Similar ity : 216

o Measures similarity based on the minimal distance that aligns two time series, accounting for 217

shifts and distortions in time. In essence, DTW measures the similarity between two temporal 218

sequences, which may not be of the same length, by aligning their points to minimize the overall 219

distance between them. 220

o Equation: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
1

1+𝐷𝑇𝑊 (𝑋[𝑖],𝑋[𝑗])
 221

▪ 𝐷𝑇𝑊 (𝑥, 𝑦) = min(cost + min(dtw𝑚𝑎𝑡𝑟𝑖𝑥 [𝑖 − 1, 𝑗], dtw𝑚𝑎𝑡𝑟𝑖𝑥 [𝑖, 𝑗 −222

1], dtw𝑚𝑎𝑡𝑟𝑖𝑥 [𝑖 − 1, 𝑗 − 1]) 223

• Dir ection Similar ity : 224

o Calculates the direction similarity via the direction method to be discussed later on. 225

Method: adjust_dynamic_parameters 226

This method adjusts the window size and similarity threshold based on the recent behavior of the 227

time series and the algorithm's performance. 228

• Volati l i ty -based Window Size Adjustment: 229

o Volatility Calculation: First, this method calculates the volatility of the most recent portion of 230

the data, defined as the standard deviation over the last data segments. The size of this 231

segment is a maximum of 10 or one-tenth of the data length but not exceeding half the length 232

of the data. 233

o Window Size Recalculation: The window size is inversely adjusted based on the calculated 234

volatility to respond to the data’s fluctuating nature. If the volatility is low, a larger window size 235

is used to smooth out noise and capture more extended patterns. If the volatility is high, the 236

window size decreases, making the model more responsive to recent changes. A scaling factor 237

controls this adjustment, clipped between 0.1 and 1.0 to prevent extreme values. 238

o Equation:𝑤𝑖𝑛𝑑𝑜𝑤 _𝑠𝑖𝑧𝑒 =239

𝑚𝑎𝑥 (𝑀𝐼𝑁_𝑊𝐼𝑁𝐷𝑂𝑊 _𝑆𝐼𝑍𝐸, 𝑚𝑖𝑛 (
𝑀𝐴𝑋_𝑊𝐼𝑁𝐷𝑂𝑊 _𝑆𝐼𝑍𝐸

𝑠𝑐𝑎𝑙𝑒 _𝑓𝑎𝑐𝑡𝑜𝑟
, 𝑀𝐴𝑋 _𝑊𝐼𝑁𝐷𝑂𝑊_𝑆𝐼𝑍𝐸)) 240

▪ where scale_factor=clip(volatility,0.1,1.0). 241

• Thr eshold Adjustment: 242

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

7

o Er r or-based Adjustment: If recent prediction errors are available, the threshold is adjusted 243

based on these errors' mean and standard deviation to accommodate the model’s predictive 244

accuracy. 245

o Similarity Score-based Adjustment: If recent similarity scores are tracked, the threshold is 246

further adjusted to reflect the mean and variability in these scores. This dynamic threshold 247

helps maintain the similarity measure's relevance under varying data conditions. 248

o Equation: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑒𝑎𝑛_𝑠𝑖𝑚 + 𝑠𝑡𝑑 _𝑠𝑖𝑚 + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 _𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 249

Method: get_dynamic_threshold 250

This method computes an adaptive threshold for the similarity scores to decide which time series 251

segments are considered similar enough to be relevant for predictions. 252

• Basic Threshold Calculation: Calculates a baseline threshold as the sum of the mean and standard deviation 253

of the similarity scores. This method aims to keep only the most similar segments, thus ensuring that the 254

predictions are based on the most relevant and recent data patterns. 255

• Thr eshold Adjustment: If fewer than five segments exceed this baseline threshold, indicating a potential 256

over-tightening, the threshold is reduced to the 90th percentile of the scores to include more segments. 257

o Equation:𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =258

{
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 , 90) 𝑖𝑓 𝑎𝑏𝑠{𝑠 > 𝑏𝑎𝑠𝑒_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} < 5

𝑏𝑎𝑠𝑒 _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 259

 260

Method: adjusted_dtw_similar ity 261

This method modifies the DTW similarity measure to be more forgiving by squaring the DTW 262

distance before inversely transforming it into a similarity score. This adjustment makes the 263

similarity measure less sensitive to small variations, emphasizing more significant patterns in the 264

similarity assessment. 265

o Equation: 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 _𝑠𝑐𝑜𝑟𝑒𝑠 =
1

1+√𝑑𝑡𝑤_𝑠𝑐𝑜𝑟𝑒𝑠
 266

Method: plot_prediction 267

This method is designed to visualize the forecasting performance of the SPINEX model by plotting 268

actual data alongside predicted values. This method serves as a tool for assessing the accuracy and 269

relevance of the model's predictions. 270

Method: extract_segments 271

This method prepares segments of the time series data for further analysis, such as computing 272

similarities or making predictions such that: 273

• Dynamic Window Size: If no specific window size is provided, the method calculates an adaptive window 274

size using the adaptive_window_size() method. 275

• Adjustment for Small Data: If the total data length is less than the determined window size, the window size 276

is adjusted to half the data length to ensure at least some segmentation can be performed. 277

• Segmentation: Using np.lib.stride_tricks.sliding_window_view, the method creates overlapping segments 278

of the specified window size from the time series data. This function efficiently generates a new view into 279

the data array without copying the data. 280

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

8

• Nor malization: Each segment is normalized by subtracting its mean and dividing by its standard deviation. 281

This step standardizes the segments, mitigating the effect of different scales or baselines in the data and 282

improving the comparability between segments. 283

o Equation: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 _𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 =
𝑠𝑒𝑔𝑚𝑒 𝑛𝑡𝑠−𝑠𝑒𝑔𝑚𝑒𝑛𝑡 _𝑚𝑒𝑎𝑛𝑠

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 _𝑠𝑡𝑑𝑠+1𝑒 −8
 284

o Here, 1e−8 is added to the standard deviations to prevent division by zero in the case of very 285

uniform segments. 286

Method: find_similar_segments 287

This method facilitates the identification of similar segments within the time series data, which is 288

crucial for making accurate predictions. 289

• Multi-Level Analysis: Depending on the multi_level attribute, the method considers multiple window sizes 290

for segmentation. These sizes include a smaller window (half the primary size), the primary window size 291

itself, and a larger window (double the primary size or one-fourth the length of the data, whichever is 292

smaller). This multi-scale approach allows the model to capture similarities at different granularities. 293

• Segment Extraction and Hashing: For each window size, the method extracts segments and computes a 294

hash to uniquely identify them. This hash is used to cache the segments and avoid redundant calculations. 295

• Similarity Calculation: For each window size, the method computes similarity matrices using the specified 296

methods (cosine, euclidean, dtw, etc.). If a large number of segments are detected (more than 500), DTW 297

is skipped to avoid performance bottlenecks. 298

• Aggr egation of Similar ities: The method averages the similarities across different methods to get a 299

composite similarity measure for each window size. These are then averaged across all window sizes to 300

get the final measure of similarity between segments. 301

• Fal lback Method: If no valid similarities are found (e.g., due to insufficient segments or errors in 302

calculation), a fallback method based on autocorrelation is used. 303

Method: fal lback_similar ity_method 304

This method provides a basic mechanism to calculate similarity based on autocorrelation when 305

other methods fail or are not applicable due to data constraints. 306

Method: analyze_segment_similar ity 307

This method quantitatively assesses how similar a particular segment (indexed) is to the most 308

recent segment in the time series. 309

• Segment Extraction: Both the target segment and a reference segment (usually the most recent one) are 310

extracted. 311

• Similarity Calculation: The method calculates similarity scores using all available similarity methods, 312

providing a detailed breakdown of how each method perceives the similarity. 313

• Feature Contributions: It calculates the absolute differences between the corresponding features of the 314

two segments to determine which features contribute most to any dissimilarity. 315

Method: get_nearest_neighbors 316

This method identifies the nearest neighbors of the most recent segment based on the computed 317

similarities and can identify tasks for anomaly detection. After calculating similarities for all 318

segments, it sorts these and picks the top k segments most similar to the latest segment, providing 319

their indices and similarity scores. 320

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

9

Method: detect_seasonal ity 321

This method is designed to identify seasonality within the time series data, which is crucial for 322

understanding periodic patterns that could influence forecasting and other analytical tasks. 323

• Autocorrelation Calculation: The method calculates the autocorrelation (ACF) for the data up to a specified 324

lag (max_lag). If max_lag is not specified, it defaults to half the length of the data. 325

• Peak Detection: The method then identifies ACF peaks, representing potential seasonal periods. Peaks are 326

detected where the autocorrelation at a given lag is greater than its neighbors, indicating a repeating pattern. 327

• Seasonality Infer ence: If any peaks are detected, the first peak is assumed to represent the primary seasonal 328

period, and its lag is returned. An empty list is returned if no peaks are detected, indicating no detectable 329

seasonality. 330

Method: detect_anomalies 331

This method identifies anomalies in the time series data by comparing the similarity of data 332

segments to a dynamically determined threshold. 333

• Segment Extraction and Similarity Calculation: Segments of the data are extracted, and their similarities are 334

computed. 335

• Thr eshold Determination: A threshold is set at a specified percentile (default is the 2nd percentile) of the 336

similarity scores, identifying the least similar segments as potential anomalies. 337

• Anomaly Identification: Segments whose similarity scores fall below the threshold are marked as anomalies. 338

• Equation: 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 _𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒) 339

Method: fal lback_prediction 340

This method provides a comprehensive mechanism for generating predictions when standard 341

approaches are not feasible, utilizing multiple time series decomposition and modeling techniques. 342

• Pr e-checks: It first ensures that there is sufficient data for prediction based on the specified number of points 343

required. 344

• Adaptive Window Sizing: This step dynamically adjusts the window size for trend extraction based on 345

minimizing the mean squared error (MSE) of the trend-subtracted data. 346

• Tr end Extr action: Utilizes a moving average to smooth the data and extract the underlying trend. 347

• Seasonality Detection: Employs autocorrelation to identify potential seasonality periods and extract these 348

seasonal components. 349

• Residual Calculation: The residuals (or unexplained components) are analyzed after removing the trend and 350

seasonal components. 351

• Anomaly Detection and Handling: Anomalies in the residuals are identified and replaced with median values 352

to stabilize the model. 353

• Non-l inear Tr end Modeling: Fits a polynomial model to predict the future trend based on past data. 354

• Seasonal Component Pr edic tion: Projects the identified seasonal patterns into the future. 355

• Residual Prediction: Uses a weighted average approach to predict future residuals, incorporating confidence 356

intervals to account for uncertainty. 357

• Combination of Components: The final prediction combines the trend, seasonal, and residual predictions to 358

form a complete forecast. 359

• Tr end: Extracted using a moving average filtered by convolution: 360

o Equation: 𝑡𝑟𝑒𝑛𝑑 = 𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒 (𝑑𝑎𝑡𝑎, 𝑤𝑖𝑛𝑑𝑜𝑤)/𝑤𝑖𝑛𝑑𝑜𝑤 _𝑠𝑖𝑧𝑒 361

• Seasonality : Identified through peak detection in the autocorrelation function. 362

• Residuals: Calculated as data − trend 363

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

10

• Confidence Intervals for Residuals: Generated by assuming the residuals follow a normal distribution 364

modulated by an exponential decay in influence. 365

Method: tune_hyperparameters 366

This method optimizes the hyperparameters of the model, specifically focusing on the detection of 367

seasonalities. 368

• Iter ative Testing: The method iterates over a range of possible numbers of seasonalities to detect (from 1 to 369

4). 370

• Pr ediction Generation : For each candidate setting, it generates predictions using the fallback_prediction 371

method. 372

• Evaluation : Calculates the MSE for each set of predictions compared to the actual data. 373

• Selection of O ptimal Par ameter : Identifies the number of seasonalities that result in the lowest MSE, 374

suggesting the best fit for the data. 375

Method: predict 376

This method combines various techniques to generate accurate forecasts based on the similarity of 377

time series segments. 378

• Dynamic Parameter Adjustment: Initially, dynamic parameters such as window size and thresholds are 379

adjusted based on recent data characteristics. 380

• Similarity Assessment: It calculates similarities between segments of the time series to identify patterns that 381

can be used for forecasting. 382

• Fal lback Prediction: If no significant similarities are found, it resorts to a fallback prediction method that uses 383

more basic statistical methods. 384

• Thr eshold Determination : Determines a dynamic threshold for considering a segment significantly similar to 385

the latest data, adjusting the threshold based on the distribution of similarity scores. 386

• Valid Predictions Identif ication : Identifies segments that meet the similarity threshold and ensures that they 387

are within a valid range for making predictions. 388

• Pr ediction Compilation : Compiles predictions from multiple segments, weighted by their similarity scores, 389

and adjusts them to align with the most recent actual data point. 390

• Er r or Handling: If any step fails, it defaults to the fallback prediction method. 391

Method: update_recent_performance 392

This method updates the performance metrics of the model by recording the recent error and 393

similarity scores, which are essential for monitoring and improving the model's accuracy over 394

time. 395

• Dynamic Parameter Adjustment: Initially, dynamic parameters such as window size and thresholds are 396

adjusted based on recent data characteristics. 397

• Similarity Assessment: It calculates similarities between segments of the time series to identify patterns that 398

can be used for forecasting. 399

Method: val idate_prediction 400

This method evaluates the robustness of the model’s predictions by using cross-validation, 401

specifically time-series cross-validation, where the order of data points is preserved. 402

• Setup: Determines the number of splits for cross-validation based on available data, ensuring there are 403

enough points for each training and testing set. 404

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

11

• Cr oss-Val idation: 405

o Single Split Handling: If there is insufficient data for multiple splits, perform a single train -test split. 406

o Multiple Splits: Uses TimeSeriesSplit from scikit-learn to create training and testing segments. It 407

ensures that predictions are based only on past data, respecting the temporal order. 408

o Prediction and Evaluation: For each split, the model predicts future values based on the training set, 409

and the predictions are evaluated using the evaluate_prediction method. 410

o Aggregation of Results: The results from each split are aggregated to calculate average performance 411

metrics across all splits. 412

Method: get_explainabi l i ty_results 413

This method provides insights into why certain predictions were made based on the similarity of 414

time series segments. 415

• Similarity Assessment: The method first identifies similar segments by calculating and evaluating segment 416

similarities. 417

• Thr eshold Determination: It dynamically determines a similarity threshold above which segments are 418

considered significantly similar. 419

• Top Segments Identification: Segments surpassing the threshold are marked as key influencers. If no 420

segments exceed the threshold, the top k segments based on similarity scores are selected. 421

• Contribution Calculation: Each top segment calculates how much each segment contributes to the 422

predictions, using weighted averages based on their similarity scores. 423

Method: analyze_and_plot_neighbors 424

This provides a deeper analysis of how and why certain segments are considered similar to the 425

current segment, offering both visual and numerical insights. 426

• Current and Neighbor Segment Extraction: Similar to plot_nearest_neighbors, but with added analysis of 427

segment similarities. 428

• Similar ity Analysis: For each neighbor, it computes detailed similarity scores using various metrics. 429

• Visualization and Reporting: Each neighbor's segment and its similarity scores are plotted and displayed. This 430

includes a breakdown of the scores for different similarity metrics and the identification of key features 431

contributing to the similarities. 432

• Similarity Scor es: Each neighbor's similarity to the current segment is quantified using methods like cosine, 433

euclidean, and DTW similarities. 434

• Feature Contr ibutions: Differences between segments are analyzed to pinpoint which specific elements (data 435

points) contribute most to the observed similarities or discrepancies. 436

Additional functions for optimized clustering: 437

Method: direction_accuracy 438

This method calculates the direction accuracy to compare the directional trends between two time 439

series segments. Given two segments, segment1 and segment2, the following steps compute the 440

direction accuracy: 441

• Calculate the Differ ences: compute the first-order differences of both segments such that: 442

o Equation:𝐷𝑖𝑓𝑓 1𝑖 = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 1𝑖+1 − 𝑠𝑒𝑔𝑚𝑒𝑛𝑡1𝑖 (with a similar approach for segment 2) 443

• Determine the Direction : Using the sign function sign(⋅), the direction of these differences can be calculated. 444

• Equation : 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 1𝑖 = 𝑠𝑖𝑔𝑛(𝐷𝑖𝑓𝑓1𝑖) (with a similar approach for segment 2) 445

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

12

• Compare Directions: Compare the directional trends of the two segments by checking if the directions are 446

equal at each time step 447

o Equation: 𝑚𝑎𝑡𝑐ℎ = {1 𝑖𝑓 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 1𝑖 = 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 2𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 448

Method: Entropy 449

The numba_sample_entropy method calculates the sample entropy of a sequence x, which is a 450

measure of the complexity or the amount of regularity and unpredictability in time series data. 451

This entropy is useful for determining the complexity of physiological time series signals. 452

• Mathematical Repr esentation : 453

o 𝑆𝑎𝑚𝑝𝑙𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − 𝑙𝑜𝑔
𝐴 +1𝑒−10

𝐵+1𝑒−10
 454

 455

Method: Hash Array (hash_array) 456

This static method generates a unique hash for a numpy array using MD5 to create keys for caching 457

purposes, allowing efficient retrieval of previously computed results. 458

Method: plot_anomalies 459

This method visualizes the anomalies detected. 460

Method: plot_nearest_neighbors 461

This method visualizes the time series segments that are most similar to the most recent segment, 462

facilitating an understanding of the model's decision-making process. 463

3.0 Description of benchmarking algorithms 464

We examined SPINEX against 18 commonly used time series forecasting algorithms, namely, 465

ARIMA, SARIMA, ETS, Holt-Winters, Prophet, Theta, Simple Moving Average, VAR, Croston's 466

Method, LSTM, Neural Networks, Gaussian Process Regression, KNN, SVR, Random Forest, 467

XGBoost, Gradient Boosting, CatBoost, and Bagging. As one can see, the first nine algorithms are 468

specifically designed for time series analysis, while the latter group consists of other ML 469

algorithms that can be adapted for time series forecasting with appropriate feature engineering, as 470

seen in [8,18–20]. Each of these algorithms is described in this section, where we showcase a brief 471

historical background and algorithmic logic (with additional details being available in the cited 472

original sources). Table 1 compares these algorithms with respect to their time series forecasting 473

characteristics. 474

3.1 Algorithms specifically designed for time series analysis 475

3.1.1 Autoregressive Integrated Moving Average (ARIMA and SARIMA) 476

ARIMA (Autoregressive Integrated Moving Average) and its seasonal variant SARIMA were 477

popularized by Box and Jenkins in the 1970s [21] – however, the concepts of Auto-Regressive and 478

Moving Average models were introduced by Yule in 1926 and by Slutsky in 1937, respectively 479

[22]. The ARIMA algorithm combines these concepts and components with differencing to handle 480

non-stationary data. The ARIMA algorithm is particularly effective for univariate time series 481

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

13

forecasting, while SARIMA extends this capability to series with seasonal patterns. The models 482

are specified by three main parameters: p (order of the Auto-Regressive term), d (degree of 483

differencing), and q (order of the Moving Average term), and SARIMA adds additional seasonal 484

parameters. These algorithms are widely used due to their flexibility and ability to capture complex 485

temporal dependencies. However, the algorithms assume linear relationships and, hence, may 486

struggle with highly nonlinear patterns. Moreover, the selection of appropriate internal parameters 487

can be challenging and often requires expert/domain knowledge or automated procedures [23]. 488

3.1.2 Croston's Method 489

Croston introduced this method in 1972 [24] as a specialized forecasting algorithm designed for 490

intermittent demand patterns. This algorithm separates the time series into two components: the 491

non-zero demand sizes and the intervals between non-zero demands. Each component is then 492

forecasted separately using simple exponential smoothing, and the final forecast is obtained by 493

dividing the demand size forecast by the interval forecast. This method is particularly useful in 494

domains where demand occurs sporadically (such as that commonly seen in inventory 495

management and spare parts forecasting) [25]. Croston's method assumes that the demand sizes 496

and intervals are independent (which often introduces bias as this assumption may not always hold 497

true). Several modifications of Croston's method have been proposed to address this main 498

limitation [26,27]. 499

3.1.3 Error, Trend, Seasonality (ETS), and the Holt-Winters Method 500

ETS (Error, Trend, Seasonality) and Holt-Winters methods are exponential smoothing techniques 501

that have evolved since their introduction by Brown and Holt in the 1950s [28,29]. These two 502

methods decompose time series into components (level, trend, and seasonality) and use weighted 503

averages of past observations to forecast future values. ETS provides a framework for selecting 504

the most appropriate model based on the nature of the components (i.e., additive or multiplicative). 505

Holt-Winters [30] is a specific implementation within the ETS family that has been modified to 506

account for time series with both trend and seasonal components. This family of algorithms can 507

be effective in handling a wide range of time series patterns. However, these algorithms may 508

struggle with complex, non-linear relationships and can be sensitive to outliers [31]. 509

3.1.4 Long Short-Term Memory (LSTM) 510

The Long Short-Term Memory (LSTM) network was introduced by Hochreiter and Schmidhuber 511

in 1997 [32] as a type of recurrent neural network. This network is designed to capture long-term 512

dependencies in sequential data. LSTMs use a series of gates (input, forget, and output gates) to 513

control the flow of information through the network, allowing them to selectively remember or 514

forget information over long sequences. This architecture makes LSTMs particularly well-suited 515

for time series forecasting, especially when dealing with complex, non-linear patterns and long-516

term dependencies. LSTMs can handle multivariate time series and can learn from historical data. 517

However, they often require substantial training data to perform well, can be computationally 518

intensive, and may be prone to overfitting if not properly regularized. Moreover, LSTM is a 519

blackbox algorithm and can be challenging to interpret [33]. 520

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

14

3.1.5 Prophet 521

Prophet, developed by Meta (Facebook formally) in 2017 [34]. This algorithm offers a procedure 522

for forecasting time series data based on an additive model that decomposes the time series into 523

trend, seasonality, and holiday components. Prophet is designed to handle daily observations with 524

at least one year of historical data and can accommodate missing values and outliers. The algorithm 525

automatically detects changepoints in the trend and allows for user-specified changepoints. A key 526

advantage of this algorithm is its ability to handle multiple seasonalities and incorporate domain 527

knowledge through easily interpretable parameters. Prophet is particularly effective for forecasting 528

tasks with strong seasonal effects (as well as those with several seasons of historical data). Yet, 529

this algorithm may struggle with short-term forecasts or datasets with limited historical data. 530

Additionally, while it is designed to be robust, it may not always capture complex, non-linear 531

patterns effectively [35]. 532

3.1.6 Simple Moving Average (SMA) 533

The Simple Moving Average (SMA) is a basic and widely used time series forecasting method. 534

The origin of SMA can be traced back to the early days of technical and inventory analysis [36]. 535

This method calculates the arithmetic mean of a set of values over a specific number of time 536

periods and is often used to smooth out short-term fluctuations and highlight longer-term trends 537

or cycles, and can be effective for short-term forecasting in stable time series with minimal trend 538

or seasonality. However, SMA has several limitations. This method can produce lags behind the 539

most recent data points and may miss sudden changes or turning points. SMA also gives equal 540

weight to all observations within the moving window, which may not be ideal if more recent 541

observations are believed to be more relevant. Despite such limitations, SMA remains a useful tool 542

for forecasting methods [37]. 543

3.1.7 Theta Method 544

The Theta algorithm was proposed by Assimakopoulos and Nikolopoulos in 2000 [38]. This 545

algorithm decomposes the time series into two "theta lines." The first line represents the long-term 546

trend, and the other captures short-term behavior. These lines are then extrapolated separately and 547

combined to produce the final forecast. The Theta method is praised for its simplicity and 548

effectiveness, especially for seasonal time series. The Theta algorithm often performs well without 549

requiring extensive parameter tuning, making it accessible for practitioners. However, the method 550

assumes that the time series can be well-represented via decomposition into two lines (which may 551

not always hold true for complex, non-linear time series). Moreover, it may struggle with abrupt 552

changes or structural breaks in the data [39]. 553

3.1.8 Vector Autoregression (VAR) 554

Vector Autoregression (VAR), introduced by Sims in 1980 [40], is a multivariate forecasting 555

technique that extends the univariate autoregressive model to capture the linear interdependencies 556

among multiple time series. In VAR, each variable is a linear function of past lags of itself and 557

past lags of the other variables. This methodology makes VAR particularly useful for 558

understanding the relationships between multiple related time series and generating forecasts for 559

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

15

these interactions. VAR models are widely used in econometrics and financial time series 560

forecasting as they can model feedback effects and provide insights into the dynamics between 561

variables through tools like impulse response functions [41]. However, VAR models assume linear 562

relationships between variables and can become overparameterized when dealing with many 563

variables or long lag structures. This could potentially lead to poor forecasts [42]. 564

3.2 ML algorithms adapted for time series forecasting 565

3.2.1 Gaussian Process Regression (GPR) 566

Gaussian Process Regression (GPR) is a non-parametric probabilistic approach to regression and 567

time series forecasting that is rooted in Bayesian statistics. This algorithm was formalized for ML 568

applications by Rasmussen and Williams [43]. The method models the target variable as a 569

Gaussian process, assuming that any finite collection of data points has a multivariate Gaussian 570

distribution. GPR is particularly valuable in time series forecasting for its ability to provide 571

uncertainty estimates along with predictions [44]. It can capture complex, non-linear relationships 572

in the data and handles missing values naturally [45]. The flexible method can incorporate various 573

trends and seasonal patterns by choosing kernel functions. However, GPR can be computationally 574

intensive for large datasets due to the need to invert large covariance matrices, and its performance 575

depends on the choice of kernel function, which may require domain expertise or extensive 576

selection procedures [46]. 577

3.2.2 Gradient Boosting and CatBoost 578

Gradient Boosting stems from a family of ensemble learning techniques, and CatBoost was 579

recently developed by Yandex [47]. These methods work by building a series of weak learners 580

(typically decision trees) sequentially, with each learner trying to correct the errors of its 581

predecessors. In time series contexts, gradient boosting methods can capture complex, non-linear 582

relationships and handle multiple input variables [48]. CatBoost, in particular, is designed to 583

reduce overfitting and handle categorical variables efficiently, which can be beneficial in 584

forecasting scenarios. However, gradient boosting algorithms do not inherently account for the 585

temporal ordering of data, requiring careful feature engineering to incorporate time-based 586

information. As such, they may also struggle with capturing long-term dependencies without 587

extensive lag features [49]. 588

3.2.3 K-Nearest Neighbors (KNN) 589

The K-Nearest Neighbors algorithm is often deployed in regression and classification tasks and 590

can be adapted for time series forecasting [50]. The algorithm is non-parametric and can capture 591

non-linear patterns in the data. In the context of time series forecasting, KNN finds historical 592

periods most similar to the current state and uses their subsequent values to make predictions. 593

KNN can be particularly effective when the time series exhibits recurring patterns or when there 594

are strong analogies between past and future behavior. However, this algorithm's performance can 595

degrade with high-dimensional data and long-term forecasts (especially with the lack of strong 596

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

16

trends). The choice of distance metric and the number of neighbors (k) can significantly impact 597

forecast accuracy [51]. 598

3.2.4 Neural Networks 599

Neural networks, encompassing various architectures beyond LSTM, have become increasingly 600

popular for time series forecasting [52]. Neural networks can capture complex, non-linear 601

relationships in time series data and are capable of handling multiple input variables. The 602

flexibility of their design allows practitioners to tailor architectures to specific forecasting 603

problems. However, neural networks are blackboxes that often require large amounts of training 604

data to perform well and can be prone to overfitting if not properly regularized. Additionally, the 605

selection of appropriate network architecture and hyperparameters often requires significant 606

expertise and computational resources [53]. 607

3.2.5 Random Forest, Bagging, and XGBoost 608

Random Forest, Bagging, and XGBoost are ensemble learning methods. Bagging, short for 609

Bootstrap Aggregating is a method to reduce variance in predictive models by creating multiple 610

subsets of the original dataset through bootstrap sampling. This method trains a separate model on 611

each subset and aggregates their predictions. Random Forest, introduced by Breiman in 2001 [54], 612

is a specific implementation of bagging that constructs multiple decision trees and merges their 613

predictions to improve accuracy and control overfitting. XGBoost, developed by Chen and 614

Guestrin in 2016 [55], implements gradient boosted decision trees designed for speed and 615

performance. All these algorithms can handle non-linear relationships and are capable of capturing 616

complex patterns in time series data when properly engineered features are provided. Additionally, 617

while they can handle multiple input variables, they may struggle with capturing long-term 618

dependencies without extensive lag features [56,57]. 619

3.2.6 Support Vector Regression (SVR) 620

Support Vector Regression is an extension of Support Vector Machines (SVM) that was developed 621

by Vapnik et al. in the 1990s [58]. In time series forecasting, SVR works by mapping the input 622

data into a high-dimensional feature space and finding a hyperplane that best fits the data while 623

maintaining a specified tolerance margin. SVR is capable of capturing non-linear relationships 624

through the use of kernel functions, making it suitable for complex time series patterns. It is 625

particularly effective when dealing with high-dimensional data and can handle multiple input 626

variables. SVR is less prone to overfitting compared to some other ML algorithms due to its 627

structural risk minimization principle [59]. However, the performance of SVR can be sensitive to 628

the tuning of kernels/hyperparameters and necessitates careful feature engineering to incorporate 629

time-based information [60]. 630

Table 1 A comparison among the examined algorithms in this study 631

Algorithm Fam ily Met h o d o lo gy & L o gic Typ ic al Use Cases St rengths/Advan t ages W eaknesses/Disadvantages

ARIMA Statistical
Linear, combines
differencing with

Time series data
without seasonal
patterns.

Flexible, good for
none/some seasonal
data.

Assumes linearity and
stationarity, may not be

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

17

autoregression and moving
average components.

suitable for complex
patterns.

SARIMA Statistical
Extends ARIMA to include
seasonal components.

Seasonal time series
data.

Handles seasonality,
well-understood.

Computationally intensive,
linear assumptions can be
overfitted with short time
series.

ETS Statistical

Exponential smoothing
(decomposing) techniques
with error, trend, and
seasonal components.

Short-term
forecasting, seasonal
and non-seasonal data.

Easy to implement,
good for data with
trends and seasonality.

May overfit on noisy data
and can struggle with
abrupt changes.

Holt-
Winters

Statistical
Triple exponential
smoothing for data with
trends and seasonality.

Seasonal time series
data.

Simple to implement,
effective for additive
and multiplicative
seasonal patterns.

Assumes additive effects,
may not handle high-
frequency data well and
can struggles with irregular
time series

Prophet Statistical
Additive and decomposable
model with trend,
seasonality, and holidays.

Daily data with strong
multiple seasonality
patterns, missing data,
and outliers.

Robust to missing data,
handles outliers,
automatically detects
changepoints, and
incorporates domain
knowledge easily.

Less effective for non-daily
data or complex patterns,
and may struggle with
short-term forecasts.

Theta Statistical

Decomposes data into two
'theta lines' for different
trend assumptions (e.g.,
long and short-term
components).

Time series data with
trends.

Simple, effective for
data with a trend.

Less effective for seasonal
or non-linear data. Offers
limited flexibility for
complex patterns.

Simple
Moving
Average

Statistical
Calculates average over a
fixed window of past
observations (n).

Smoothing noisy data,
simple forecasts.

Simple to understand
and implement.

Not adaptive, lags in
response to real trend
changes.

VAR Statistical

Vector Autoregression,
multivariate linear model
relating different time series
variables.

Multivariate time
series data.

Captures relationships
between multiple
series, good for
stationary series.

Requires all series to be
stationary, high
computational cost.

Croston's
Method

Statistical

Separately forecasts non-
zero demand sizes and
intervals and adjusts for
intermittent demand.

Forecasting
intermittent demand.

Good for sparse or
intermittent data.

May be biased, assumes
demand pattern does not
change.

LSTM ML
A type of recurrent neural
network that uses gates to
control information flow.

Complex patterns,
large datasets, non-
linear relationships.

Good for capturing long
dependencies, non-
linear patterns.

Requires large datasets,
computationally intensive.
Blackbox nature limits
interpretability.

Neural
Networks

ML
Layers of interconnected
neurons learning data
features.

Complex nonlinear
patterns, high-
dimensional data.

Highly flexible, powerful
for complex patterns
and can handle non-
linear relationships.

Requires large data and
careful feature
engineering, prone to
overfitting, black box.

Gaussian
Process

Regression
ML

Non-parametric kernel-
based probabilistic model.

Small to medium
datasets, needing
uncertainty
estimation.

Provides uncertainty
measures, flexible.

Computationally expensive,
not for large data.

KNN ML

Predicts based on similar
historical patterns by using
'k' nearest points for
prediction.

Small datasets, simple
non-linear patterns.

Simple, non-parametric,
and effective for non-
linearities in small
datasets.

Not scalable, sensitive to
the choice of k and noisy
data.

SVR ML

Fits within a certain
threshold and finds the
optimal hyperplane in high-
dimensional space.

Regression with clear
margin of error.

Effective in high-
dimensional space,
robust to outliers.

Requires good parameter
tuning, and can be
computationally intensive
for very large datasets.

Random
Forest

ML
Ensemble of decision trees,
averaging to improve
prediction.

Various problems.
Robust, handles
overfitting well, good
for mixed data types,

Requires feature
engineering for temporal
aspects.

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

18

and can provide feature
importance

XGBoost ML
Gradient boosting with
decision trees optimized for
speed and performance.

Various problems.
Fast, scalable, high
performance, handles
various data types.

Prone to overfitting if not
tuned properly.

Gradient
Boosting

ML

Sequential correction of

predecessor's errors, using
decision trees.

Various problems.
Reduces bias and
variance, powerful.

Computationally intensive
and prone to overfitting.

CatBoost ML Categorical Boosting.
Datasets with many
categorical features.

Efficient with
categorical data, less
prone to overfitting.

Slightly slower compared
to other boosting methods.

Bagging ML

Bootstrap aggregating,
reduces variance by
averaging a set of parallel
estimators.

Reducing variance in
noisy data sets.

Reduces overfitting,
robust to noisy data.

Can be less effective on
biased models, high

memory consumption.

 632

4.0 Description of benchmarking experiments, metrics, and datasets 633

This benchmarking analysis involves a set of 25 synthetic and 25 real timeseries. This analysis 634

was run and evaluated in a Python 3.10.5 environment using an Intel(R) Core(TM) i7-9700F CPU 635

@ 3.00GHz and an installed RAM of 32.0GB. All algorithms were run in default settings to allow 636

fairness and ensure reproducibility, and the performance of each algorithm was evaluated through 637

several metrics, as discussed below and listed in Table 2. These metrics, along with the selected 638

sizes of datasets, followed the recommendations of [7,61]. 639

We utilize four primary metrics that can be classified under global/general and specific/internal 640

metrics. The global metrics are suitable for broad comparisons and evaluations across multiple 641

datasets and models (e.g., Mean Absolute Scaled Error (MASE) and Dynamic Time Warping 642

(DTW)). On the other hand, internal metrics are used to provide detailed insights into particular 643

aspects of model performance (such as mean absolute deviation (MAD) and direction accuracy 644

(DA)). It is worth noting that other metrics (i.e., Root Mean Square Error (RMSE) and the Mean 645

Absolute Error (MAE)) were not used herein due to their inherent limitations and vulnerabilities 646

with respect to time series analysis, as pointed out by [62,63]. 647

The MASE is a relative measure of forecast accuracy that scales the forecast error by the in-sample 648

mean absolute error. MASE is scale-independent and can be used to compare forecast accuracy 649

across different time series [64,65]. DTW measures the similarity between two time series by 650

finding an optimal alignment between them. Unlike simple distance measures, DTW can handle 651

time shifts and distortions by allowing flexible matching of time indices [66]. The MAD measures 652

the average absolute error between the actual and forecasted values to clearly indicate the average 653

magnitude of forecast errors [67]. The DA measures how well the model predicts the direction of 654

the time series movement. This metric evaluates whether the forecast correctly predicts the 655

increase or decrease in the actual values from one time point to the next. 656

Table 2 List of performance metrics. 657
Typ e Met r ic Fo rm u la

Specific/Internal
Metrics

Mean Absolute
Deviation (MAD)

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑦𝑡 − 𝑦𝑡 |

𝑛

𝑡=1

Where:

• yt is the actual value at time t.

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

19

• y^t is the forecasted value at time t.
n is the total number of observations.

Direction Accuracy
(DA)

𝐷𝐴 =
1

𝑛 − 1
∑ II((𝑦𝑡 − 𝑦𝑡− 1)(𝑦𝑡 − 𝑦𝑡−1) > 0)

𝑛

𝑡=2

Where:

• yt is the actual value at time t.

• y^t is the forecasted value at time t.

• II is the indicator function that equals 1 if the condition inside is true and 0 otherwise.

• n is the total number of observations.

Global/External
Metrics

Mean Absolute
Scaled Error (MASE)

𝑀𝐴𝑆𝐸 =

1
𝑛

∑ |𝑦𝑡 − 𝑦𝑡 |𝑛
𝑡=1

1
𝑛

∑ |𝑦𝑡 − 𝑦𝑡 −1|𝑛
𝑡= 1

Where:

• yt is the actual value at time t.

• y^t is the forecasted value at time t.

• n is the total number of observations.

Dynamic Time
Warping (DTW)

𝐷𝑇𝑊(𝐴,𝐵) = 𝑚𝑖𝑛√∑ (𝑎𝑖 − 𝑏𝑖)2

𝑛

𝑖=2

Where:

• A=(a1,a2,…,an) and B = (b1,b2,…,bm) are two sequences of length n and m respectively.

• i′ is the optimal alignment index of b corresponding to ai.

 658

4.1 Synthetic datasets 659

Twenty five synthetic timeseries of various scenarios were generated and examined by all 660

algorithms (see Fig. 1 and Table 3). These timeseries were generated via the generate_time_series 661

function, which allows researchers to generate controlled datasets that can be used to benchmark 662

and evaluate the performance of time series forecasting models. This particular function accepts a 663

specific mathematical function and the number of data points (n_points) as input parameters. Then, 664

this function generates a sequence of equally spaced time points over a specified range (t_max). 665

The chosen function is applied to these time points to produce the corresponding time series data. 666

Gaussian noise is added to simulate real-world conditions where data often includes random 667

variations. The generate_time_series function starts by creating an array of time points using 668

numpy.linspace, which ensures an even distribution of points between 0 and the specified t_max. 669

This array of time points, t, is then passed to the provided time series function (func), which applies 670

the mathematical transformation and returns the resulting data series. 671

Table 3 Parameters used in the synthetic timeseries 672

Fu n c t io n D esc r ip t io n Mathematical Ex p ressio n No ise L evel Ch arac t er ist ic s
Linear trend Linear increase with Gaussian noise 0.5t+ϵ σ=0.1 Simple trend

Quadratic trend Quadratic increase with Gaussian noise 0.05t2+ϵ σ=0.1 Parabolic trend

Exponential growth Exponential increase with Gaussian noise e0.1t+ϵ σ=0.1 Exponential trend

Sine wave (seasonal) Periodic sine wave with Gaussian noise sin(2πt)+ϵ σ=0.1
Seasonal, periodic

pattern

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

20

Cosine wave with
linear trend

Cosine wave superimposed on a linear
trend with noise

cos(2πt)+0.1t+ϵ σ=0.1
Trend and
seasonality

combination

Composite of sine
waves

Multiple sine waves combined with
Gaussian noise

sin(2πt)+0.5sin(4πt)+ϵ σ=0.1
Multiple

seasonalities
Logistic growth Sigmoidal growth with Gaussian noise 1/1+e−t+5+ϵ σ=0.05 Non-linear growth

Damped oscillation
Exponentially damped sine wave with
noise

e−0.1tsin(2πt)+ϵ σ=0.05 Oscillatory effect

Step function Discrete steps with Gaussian noise step(t)+ϵ σ=0.1 Abrupt changes

Sawtooth wave
Linear periodic rise with a drop and
Gaussian noise

(t%1)+ϵ σ=0.05 Sharp transitions

Square wave
Alternating high and low values with
Gaussian noise

sign(sin(2πt))+ϵ σ=0.1
Discrete, binary

states

Exponential decay
Exponential decrease with Gaussian
noise

e−0.2t+ϵ σ=0.05 Decay trend

Logarithmic growth Logarithmic increase with Gaussian noise log(t+1)+ϵ σ=0.1 Logarithmic trend
Composite trend,

seasonal, and noise
Combination of quadratic trend, sine
wave, and noise

0.01t2+sin(2πt)+0.5ϵ σ=1 Complex pattern

Autocorrelated
process (AR(1))

Autoregressive process with Gaussian
noise

0.8yt−1+ϵ σ=0.5
Dependency on
previous values

Polynomial trend
(cubic)

Cubic polynomial trend with Gaussian
noise

0.01t3−0.1t2+0.5t+ϵ σ=0.1
Higher-order

polynomial trend

Sigmoid function Sigmoidal growth with Gaussian noise 1/1+e−t+5+ϵ σ=0.05 Non-linear growth

Impulse response
Exponentially decaying sinusoidal
impulse with noise

e−tsin(2πt)+ϵ σ=0.05
Impulse-like

behavior

Cyclical pattern with
trend

Sine wave with linear trend and Gaussian
noise

sin(2πt/5)+0.05t+ϵ σ=0.1 Cyclic and trending

Composite of
exponential growth
and seasonal pattern

Exponential growth with superimposed
sine wave and noise

e0.05t+0.5sin(2πt)+ϵ σ=0.1
Complex trend and

seasonality

Piecewise linear
function

Linear segments with Gaussian noise piecewise(t)+ϵ σ=0.1
Segmented linear

behavior

Brownian motion
(random walk)

Cumulative sum of Gaussian noise ∑ϵ σ=0.1
Stochastic, random

walk

Composite of
multiple trends

Combination of quadratic, sinusoidal,
and exponential trends with noise

0.01t2+0.1sin(2πt)+0.05e0.1t+
ϵ

σ=0.1
Multiple trend
components

Chaotic logistic map Logistic map function with chaos 3.9t(1−t)+ϵ σ=0.1 Chaotic behavior

GARCH-like volatility
clustering

Gaussian noise with time-varying
volatility

N[(0, 0.1 + 0.9 abs(yt-1)]
(0, 0.1 + 0.9

abs(yt-1)
Volatility clustering

 673

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

21

 674

Fig. 1 Visualization of the synthetic datasets 675

The outcome of the benchmarking analysis on the synthetic datasets is listed in Table 4. As one 676

can see, this table showcases three different ranking methods (namely, based on the average 677

ranking, normalized ranking, and wins). All ranking systems used the abovementioned DA, DTW, 678

MASE, and MAD metrics, wherein lower values indicate better performance (rank 1 is best), 679

except for the DA metric, where higher values indicate better performance (rank 1 is best). 680

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

22

The first ranking system represents averages across all datasets for each algorithm. Each metric 681

was ranked individually, and the average of these ranks determined the Average Rank for each 682

algorithm. The Final Rank was then assigned based on the Average Rank values. Then, the second 683

ranking system involves averaging the original metric values across all datasets for each algorithm. 684

These averages were then normalized to a 0-1 scale for each metric. The Average Normalized Score 685

is then computed as the mean of all normalized metric scores for each algorithm, and the Final 686

Rank is derived from these average normalized scores to allow for a fair comparison across 687

different metrics and algorithms. Finally, the third ranking system adopted the ranking by Wins 688

method. In this system, metric values were averaged across all datasets for each algorithm. Each 689

metric was ranked individually. The rank columns display the rank for each metric, and the 690

Average Rank reflects the mean of these ranks for each algorithm. The Final Rank was determined 691

based on the Average Rank values. This ranking method aimed to balance performance across all 692

metrics, emphasizing how frequently each algorithm performed best in each metric. 693

Table 4 presents a collective view of the algorithmic performance across the different datasets and 694

systems used. As one can see, SPINEX ranks 5th under the first ranking system and 1st under the 695

other two ranking systems. Despite not being the top-ranked algorithm in the first ranking system, 696

SPINEX consistently performed well across different metrics. This performance suggests a well-697

rounded response. When comparing SPINEX to other algorithms such as SARIMA, Prophet, Holt-698

Winters, and Theta, it is evident that SPINEX stands out regarding consistent performance and 699

robustness. Similarly, Prophet and Theta showed competitive performance but could not match 700

SPINEX's consistency across all ranking systems. 701

Table 4 Ranking results on real data 702

Algo r i t h m
D i rectio n

Ac c urac y
D TW M ASE M AD

D i rec t io n

Ac c urac y (ran k)
D TW (ran k)

M ASE

(ran k)

M AD

(ran k)

Av erage

(ran k)

F in al

(ran k)

B as ed o n av erage ran k in gs

SARIMA 0.578 15.353 2625.313 0.116 3.570 5.830 7.890 9.250 6.640 1

Prophet 0.546 2.058 58.910 0.095 3.870 6.210 7.430 9.030 6.640 2

Holt-Winters 0.572 15.419 46.643 0.291 3.360 6.400 7.980 8.910 6.660 3

Theta 0.550 2.451 82.481 0.100 3.600 7.080 7.520 9.660 6.960 4

SPINEX 0.602 1.956 45.676 0.075 3.230 6.840 10.300 8.950 7.330 5

ARIMA 0.264 2.544 84.369 0.097 7.190 8.800 7.900 6.980 7.720 6

Croston 0.000 2.602 87.962 0.101 10.370 9.130 7.850 5.360 8.180 7

ETS 0.000 2.603 87.962 0.101 10.370 9.360 7.980 5.350 8.260 8

LSTM 0.502 3.756 115.265 0.090 4.390 9.060 9.500 10.140 8.270 9

Random Forest 0.000 2.698 88.205 0.101 10.370 10.120 8.990 5.290 8.690 10

Bagging 0.000 2.698 88.205 0.101 10.370 10.120 8.990 5.290 8.690 10

Gradient Boosting 0.000 2.689 88.144 0.101 10.370 10.210 8.950 5.470 8.750 12

XGBoost 0.000 2.695 88.281 0.101 10.370 10.560 9.310 5.340 8.890 13

SMA 0.000 2.669 88.733 0.101 10.370 10.530 9.640 5.400 8.980 14

KNN 0.000 2.669 88.733 0.101 10.370 10.530 9.590 5.450 8.990 15

CatBoost 0.000 2.666 89.402 0.101 10.370 10.990 9.820 5.330 9.130 16

Neural Network 0.518 6.952 194.656 0.110 3.660 13.880 14.080 11.850 10.870 17

SVR 0.166 4.262 157.608 0.115 7.750 13.230 14.220 11.280 11.620 18

Gaussian Process 0.255 7.354 144.260 0.097 6.840 15.660 16.440 9.300 12.060 19

B as ed o n n o rmal i z ed ran k in gs

SPINEX 0.602 1.956 45.676 0.075 0.000 0.000 0.000 0.000 0.000 1

Prophet 0.546 2.058 58.910 0.095 0.094 0.008 0.005 0.093 0.050 2

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

23

Theta 0.550 2.451 82.481 0.100 0.087 0.037 0.014 0.115 0.063 3

LSTM 0.502 3.756 115.265 0.090 0.167 0.134 0.027 0.070 0.100 4

ARIMA 0.264 2.544 84.369 0.097 0.562 0.044 0.015 0.103 0.181 5

Neural Network 0.518 6.952 194.656 0.110 0.139 0.371 0.058 0.164 0.183 6

Gaussian Process 0.255 7.354 144.260 0.097 0.577 0.401 0.038 0.103 0.280 7

SVR 0.166 4.262 157.608 0.115 0.725 0.171 0.043 0.184 0.281 8

Croston 0.000 2.602 87.962 0.101 1.000 0.048 0.016 0.119 0.296 9

ETS 0.000 2.603 87.962 0.101 1.000 0.048 0.016 0.119 0.296 10

KNN 0.000 2.669 88.733 0.101 1.000 0.053 0.017 0.119 0.297 11

SMA 0.000 2.669 88.733 0.101 1.000 0.053 0.017 0.119 0.297 11

CatBoost 0.000 2.666 89.402 0.101 1.000 0.053 0.017 0.119 0.297 13

Gradient Boosting 0.000 2.689 88.144 0.101 1.000 0.054 0.016 0.119 0.297 14

XGBoost 0.000 2.695 88.281 0.101 1.000 0.055 0.017 0.119 0.298 15

Random Forest 0.000 2.698 88.205 0.101 1.000 0.055 0.016 0.119 0.298 16

Bagging 0.000 2.698 88.205 0.101 1.000 0.055 0.016 0.119 0.298 16

Holt-Winters 0.572 15.419 46.643 0.291 0.051 1.000 0.000 1.000 0.513 18

SARIMA 0.578 15.353 2625.313 0.116 0.040 0.995 1.000 0.192 0.557 19

B as ed o n win s

SPINEX 0.602 1.956 45.676 0.075 1 1 1 1 1 1

Prophet 0.546 2.058 58.910 0.095 5 2 3 3 3.25 2

Theta 0.550 2.451 82.481 0.100 4 3 4 6 4.25 3

ARIMA 0.264 2.544 84.369 0.097 8 4 5 4 5.25 4

Croston 0.000 2.602 87.962 0.101 11 5 6 7 7.25 5

ETS 0.000 2.603 87.962 0.101 11 6 7 7 7.75 6

Gradient Boosting 0.000 2.689 88.144 0.101 11 10 8 7 9 7

SMA 0.000 2.669 88.733 0.101 11 8 12 7 9.5 8

LSTM 0.502 3.756 115.265 0.090 7 14 15 2 9.5 8

KNN 0.000 2.669 88.733 0.101 11 8 12 7 9.5 8

Random Forest 0.000 2.698 88.205 0.101 11 12 9 7 9.75 11

CatBoost 0.000 2.666 89.402 0.101 11 7 14 7 9.75 11

Bagging 0.000 2.698 88.205 0.101 11 12 9 7 9.75 11

XGBoost 0.000 2.695 88.281 0.101 11 11 11 7 10 14

Holt-Winters 0.572 15.419 46.643 0.291 3 19 2 19 10.75 15

Gaussian Process 0.255 7.354 144.260 0.097 9 17 16 5 11.75 16

Neural Network 0.518 6.952 194.656 0.110 6 16 18 16 14 17

SARIMA 0.578 15.353 2625.313 0.116 2 18 19 18 14.25 18

SVR 0.166 4.262 157.608 0.115 10 15 17 17 14.75 19

 703

Figure 2 shows a more detailed examination of the performance of all algorithm algorithms 704

evaluated across different settings and metrics. This evaluation was conducted for two different 705

parameters: maximum time (tmax) and number of sequence points (npoints). 706

In terms of DA, which measures how well the model predicts the direction of the time series 707

movement, SPINEX maintained strong performance across both settings. The graphs indicate that 708

SPINEX's performance remained relatively stable and high compared to other algorithms as the sub-709

settings increased. Such stability can be crucial for applications requiring reliable directional 710

predictions. More specifically, in the tmax graph, SPINEX showed a slight improvement with higher 711

sub-settings, indicating its adaptability to longer forecasting horizons. Similarly, in the npoints 712

graph, SPINEX outperformed most other algorithms, demonstrating its effectiveness in handling 713

varying data point quantities. 714

For the DTW metric, which measures the alignment between predicted and actual time series, 715

SPINEX also performed well across different settings. In both graphs, SPINEX maintained lower 716

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

24

DTW values, indicating closer alignment and better predictive accuracy. The tmax graph shows that 717

SPINEX's DTW values remained relatively stable, suggesting its robustness to changes in the 718

forecast length. The npoints graph further highlights SPINEX's capability to handle datasets with 719

varying numbers of points without significant loss in accuracy. Furthermore, SPINEX maintained 720

lower MASE and MAD values compared to many other algorithms. This performance indicates 721

that SPINEX can provide accurate forecasts. Figure 3 presents a visual example of two time series 722

as predicted by SPINEX and other algorithms. 723

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

25

 724

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

26

Figure 2 Individual rankings per algorithm for the internal and external metrics. 725

 726

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

27

 727

Fig. 3 Visualization of forecasting on Dataset no. 2 [tmax = 10, npoints = 50] (top) and Dataset no. 728

6 [tmax = 1, npoints = 500] (bottom) 729

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

28

4.2 Real datasets 730

Twenty four real datasets were used herein to further evaluate the performance of SPINEX against 731

the other algorithms listed above. These datasets span univariate and multivariate scenarios(see 732

Table 5 and Fig. 4). Additional details can be found in the cited sources. 733

Table 5 Real datasets used in the analysis 734

Typ e D at aset Nam e Sam p les* Feat u res Referen c es

Univariate

Airline Passengers 144 2 [68]

Sunspots 2820 2 [69]

Daily Female Births 365 2 [70]

Yearly Water Usage 79 2 [71]

Daily Minimum Temperatures 3650 2 [72]

Monthly Car Sales 108 2 [73]

Shampoo Sales Data 36 2 [74]

Temperature Data 3650 2 [75]

Monthly Writing Paper Sales 147 2 [76]

Monthly Champagne Sales 105 2 [77]

Monthly Robberies 118 2 [78]

Electric Production 397 2 [79]

Web Traffic Dataset 550 2 [80]

Multivariate

Stock and PM2.5 Prediction 5650 10 [81]

Tata Global Forecasting 2100 8 [82]

International Airline Passengers 13391 6 [83]

Pollution Dataset 43824 13 [84]

Daily Stock Prices 52000 8 [85]

ETT-small 17420 8 [86]

Jaipur Final Clean Data 676 40 [87]

Aprocessed 604802 17 [88]

Insurance 1338 7 [89]

Indian Crime Data Analysis Forecasting I 9840 33 [90]

Indian Crime Data Analysis Forecasting II 295374 3 [90]

*Large datasets were stopped at 5000 data points, given the computational resources available during this study. 735

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

29

 736

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

30

Fig. 4 Visualization of the real datasets 737

The benchmarking and ranking analysis results are examined similarly to the case of synthetic data 738

by using the average, normalized, and win methods. These results are listed in Table 6. This table 739

shows that SPINEX consistently ranks in the top two positions, along with the Holt-Winters 740

algorithm. 741

Table 6 Ranking results on real data 742

Algo r i t h m
D i rectio n
Ac c urac y

D TW M ASE M AD
D i rec t io n

Ac c urac y (ran k)
D TW (ran k)

M ASE
(ran k)

M AD
(ran k)

O v eral l
ran k

F in al
(ran k)

B as ed o n av erage ran k in gs

Holt-Winters 0.549 1.998 3.807 0.060 5.400 9.960 13.960 15.960 11.320 1

SPINEX 0.563 1.635 2.671 0.063 5.320 5.080 17.240 18.520 11.540 2

SARIMA 0.540 2.422 3.778 0.065 5.400 11.160 16.040 15.800 12.100 3

Prophet 0.464 2.100 6.896 0.071 8.440 8.680 13.560 19.640 12.580 4

Theta 0.491 2.299 13.739 0.073 6.760 13.400 18.040 13.160 12.840 5

SMA 0.000 2.472 23.792 0.078 20.040 19.320 14.840 10.600 16.200 6

LSTM 0.402 15.077 48.378 0.075 9.500 17.420 20.670 17.830 16.350 7

KNN 0.000 2.472 23.792 0.078 20.040 19.720 15.160 10.600 16.380 8

XGBoost 0.000 2.594 24.067 0.078 20.040 20.200 16.840 10.280 16.840 9

Gradient Boosting 0.000 2.567 24.043 0.078 20.040 20.120 16.680 10.760 16.900 10

Random Forest 0.000 2.597 23.894 0.078 20.040 20.920 16.680 11.080 17.180 11

Bagging 0.000 2.597 23.894 0.078 20.040 20.920 16.680 11.080 17.180 11

CatBoost 0.000 2.629 24.776 0.078 20.040 21.640 18.200 9.960 17.460 13

Croston 0.000 2.610 23.925 0.078 20.040 21.400 19.400 10.840 17.920 14

ETS 0.000 2.612 23.927 0.078 20.040 21.800 19.480 10.840 18.040 15

ARIMA 0.146 2.536 23.839 0.079 15.400 21.000 20.440 17.640 18.620 16

SVR 0.156 3.348 105.681 0.093 15.080 21.480 23.080 19.880 19.880 17

Neural Network 0.489 5.460 37.621 0.084 6.360 27.320 26.040 20.920 20.160 18

Gaussian Process 0.197 6.240 159.080 0.082 13.080 33.640 32.200 19.560 24.620 19

B as ed o n n o rmal i z ed ran k in gs

Holt-Winters 0.549 1.998 3.807 0.060 0.024 0.027 0.007 0.000 0.015 1

SPINEX 0.563 1.635 2.671 0.063 0.000 0.000 0.000 0.093 0.023 2

SARIMA 0.540 2.422 3.778 0.065 0.039 0.059 0.007 0.176 0.070 3

Prophet 0.464 2.100 6.896 0.071 0.176 0.035 0.027 0.333 0.143 4

Theta 0.491 2.299 13.739 0.073 0.126 0.049 0.071 0.400 0.161 5

Neural Network 0.489 5.460 37.621 0.084 0.130 0.285 0.223 0.730 0.342 6

ARIMA 0.146 2.536 23.839 0.079 0.740 0.067 0.135 0.580 0.381 7

Simple 0.000 2.472 23.792 0.078 1.000 0.062 0.135 0.546 0.436 8

KNN 0.000 2.472 23.792 0.078 1.000 0.062 0.135 0.546 0.436 9

Gradient Boosting 0.000 2.567 24.043 0.078 1.000 0.069 0.137 0.546 0.438 10

Bagging 0.000 2.597 23.894 0.078 1.000 0.072 0.136 0.546 0.438 11

Random 0.000 2.597 23.894 0.078 1.000 0.072 0.136 0.546 0.438 11

XGBoost 0.000 2.594 24.067 0.078 1.000 0.071 0.137 0.546 0.438 13

Croston 0.000 2.610 23.925 0.078 1.000 0.072 0.136 0.546 0.439 14

ETS 0.000 2.612 23.927 0.078 1.000 0.073 0.136 0.546 0.439 15

CatBoost 0.000 2.629 24.776 0.078 1.000 0.074 0.141 0.546 0.440 16

LSTM 0.402 15.077 48.378 0.075 0.286 1.000 0.292 0.456 0.508 17

SVR 0.156 3.348 105.681 0.093 0.722 0.127 0.659 1.000 0.627 18

Gaussian Process 0.197 6.240 159.080 0.082 0.650 0.343 1.000 0.672 0.666 19

B as ed o n win s

SPINEX 0.563 1.635 2.671 0.063 1 1 1 2 1.25 1

Holt-Winters 0.549 1.998 3.807 0.060 2 2 3 1 2 2

SARIMA 0.540 2.422 3.778 0.065 3 5 2 3 3.25 3

Prophet 0.464 2.100 6.896 0.071 6 3 4 4 4.25 4

Theta 0.491 2.299 13.739 0.073 4 4 5 5 4.5 5

SMA 0.000 2.472 23.792 0.078 11 6 6 7 7.5 6

KNN 0.000 2.472 23.792 0.078 11 7 7 7 8 7

ARIMA 0.146 2.536 23.839 0.079 10 8 8 16 10.5 8

XGBoost 0.000 2.594 24.067 0.078 11 10 14 7 10.5 8

Croston 0.000 2.610 23.925 0.078 11 13 11 7 10.5 8

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

31

ETS 0.000 2.612 23.927 0.078 11 14 12 7 11 11

Random Forest 0.000 2.597 23.894 0.078 11 11 9 13 11 11

Bagging 0.000 2.597 23.894 0.078 11 11 9 13 11 11

Gradient Boosting 0.000 2.567 24.043 0.078 11 9 13 13 11.5 14

CatBoost 0.000 2.629 24.776 0.078 11 15 15 7 12 15

LSTM 0.402 15.077 48.378 0.075 7 19 17 6 12.25 16

Neural Network 0.489 5.460 37.621 0.084 5 17 16 18 14 17

Gaussian Process 0.197 6.240 159.080 0.082 8 18 19 17 15.5 18

SVR 0.156 3.348 105.681 0.093 9 16 18 19 15.5 18

 743

Figure 5 illustrates the performance of various algorithms across different settings and metrics. 744

Each of these metrics is evaluated across two settings: dataset length (short [datasets of less than 745

200 points] vs. long [datasets of more than 200 points]) and dataset type (univariate vs. 746

multivariate). Overall, one can see the performance of SPINEX matches well with other algorithms 747

and, in some cases, outperforms them. 748

For example, in the DA plots, SPINEX demonstrates a notable trend for short and long sequences 749

and univariate and multivariate data. This suggests that SPINEX is proficient at predicting the 750

correct direction. In the DTW metric, SPINEX exhibits a lower DTW value for short sequences, 751

which indicates a higher similarity and better alignment of time series data than other algorithms. 752

However, as the sequence length extends, SPINEX's DTW value increases, suggesting that its ability 753

to maintain similarity diminishes slightly with longer sequences. This observation holds for the 754

uni and multivariate datasets and other algorithms. 755

The MASE metric plots reveal that SPINEX performs consistently well across different lengths and 756

types, with slightly better performance for short and univariate sequences. This trend continues for 757

long sequences, where SPINEX remains competitive. It is worth noting that this algorithm maintains 758

the lowest average MASE for long and multivariate sequences among the other algorithms. 759

Finally, the MAD metric shows that SPINEX consistently achieves low values across both length 760

and type dimensions. 761

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

32

 762

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

33

Figure 5 Further analysis in terms of dataset length and type 763

Figure 6 presents a sample of a visual representation of two time series as predicted by SPINEX and 764

other algorithms. These two datasets represent those that fall under short and long time series. In 765

both cases, it is clear that the forecasts by SPINEX are in good agreement with the actual series. 766

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

34

 767

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

35

 768

Fig. 6 Visualization of forecasting on Yearly Water Usage dataset (top) and Tata Global 769

Forecasting dataset (bottom) 770

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

36

4.3 Dataset examination and Pareto efficiency analysis 771

Once the above analysis was completed, the same results were examined to identify the most 772

reoccurring complex datasets that received the poorest performance and the most consistently 773

ranked datasets with the best performance across all algorithms. The outcome of this analysis is 774

listed in Table 7. This table shows the top 3 datasets in each category and synthetic and real 775

datasets. Interestingly, all complex datasets are univariates, while those that fall under the 776

consistent datasets have a mixture of both types. 777

Table 7 Dataset examination 778

Typ e Co mplex Dat aset Ch arac t er ist ic s Oc curren c es Consistent Dataset Ch arac t er ist ic s Oc c u rren c es

Synthetic
data

Dataset 27
tmax: 100,

n_points: 5000
17 Dataset 106

tmax: 100,
n_points: 50

9

Dataset 96
tmax : 10,

n_points: 5000
14 Dataset 115

tmax: 100,
n_points: 50

9

Dataset 99
tmax: 100,

n_points: 5000
8 Dataset 91

tmax: 1,
n_points: 50

9

Real data

Sunspots 2820/2 15
Yearly Water

Usage
79/2 13

Stock and PM2.5
Prediction

5650/10 14
Tata Global
Forecasting

2100/8 10

Indian Crime II 550/2 8 Jaipur 676/40 7

 779

A Pareto analysis is performed on synthetic datasets to determine the best-performing time series 780

algorithms based on the selected evaluation metrics (see Table 8). This analysis employs Pareto 781

optimality to identify non-dominated solutions (i.e., those representing optimal trade-offs between 782

different performance metrics: DA, DTW, MASE, and MAD). The concept of Pareto optimality 783

ensures that the final set of recommended algorithms consists of truly superior options, each 784

offering a distinct balance of strengths across various performance criteria. The process starts by 785

normalizing all metrics to a 0-1 scale using min-max normalization. The normalized data is then 786

grouped by algorithm and dataset to calculate mean values for each metric. Each algorithm further 787

aggregates these grouped results to evaluate overall performance across all datasets. Then, a 788

solution is Pareto optimal if no other solution is superior in all metrics simultaneously. 789

Table 8 Pareto analysis 790

Algo r it h m D irection Accurac y D TW MASE MAD P areto Effic ien t

SPINEX 0.602 1.956 45.676 0.075 TRUE
Holt-Winters 0.572 15.419 46.643 0.291 TRUE

Theta 0.550 2.451 82.481 0.100 TRUE

LSTM 0.502 3.756 115.265 0.090 TRUE
Prophet 0.546 2.058 58.910 0.095 FALSE

ARIMA 0.264 2.544 84.369 0.097 FALSE

Croston 0.000 2.602 87.962 0.101 FALSE
ETS 0.000 2.603 87.962 0.101 FALSE

Gradient Boosting 0.000 2.689 88.144 0.101 FALSE

Random Forest 0.000 2.698 88.205 0.101 FALSE

Bagging 0.000 2.698 88.205 0.101 FALSE
XGBoost 0.000 2.695 88.281 0.101 FALSE

Simple Moving Average 0.000 2.669 88.733 0.101 FALSE

KNN 0.000 2.669 88.733 0.101 FALSE

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

37

CatBoost 0.000 2.666 89.402 0.101 FALSE

Gaussian Process 0.255 7.354 144.260 0.097 FALSE
SVR 0.166 4.262 157.608 0.115 FALSE

Neural Network 0.518 6.952 194.656 0.110 FALSE

SARIMA 0.578 15.353 2625.313 0.116 FALSE

 791

4.4 Complexity analysis 792

We evaluate the complexity of the selected algorithms by analyzing the execution time data across 793

across 50, 500, and 5000 samples (n). Then, we fit three types of models to this data: polynomial 794

(linear in log-log scale), logarithmic, and exponential. For each algorithm, we compute the 795

regression parameters and the R² values for these models as a means to measure the goodness of 796

fit and the model with the highest R² value is considered the best fit, and its corresponding Big O 797

notation is recorded. This analysis reveals that SPINEX demonstrates logarithmic complexity and 798

hence indicates that its execution time scales efficiently with the logarithm of the input size, 799

represented as O(log n), as seen in Fig. 7. It is worth noting that this algorithm was found to have 800

only logarithmic complexity, while others had polynomial or exponential complexity (see Table 801

9). However, and from a scalable perspective, this complexity of SPINEX arises from the 802

integration of multiple similarity measures (as well as the embedded dynamic adjustments) within 803

the algorithm. The overhead of these settings may pose challenges in practical implementations 804

when this algorithm is used in large datasets. This can be thought of as one challenge that could 805

be revisited and overcome in the near future. 806

 807

Fig. 7 Outcome of complexity analysis 808

Table 9 Complexity analysis 809

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

38

Algo r it h m Co m p lex it y t yp e R 2 Big O n o t atio n

Prophet exp 0.84 O(en)
ETS exp 0.94 O(en)

XGBoost exp 0.92 O(en)

Theta exp 0.85 O(en)
Simple Moving Average exp 0.98 O(en)

Holt-Winters exp 0.99 O(en)

Croston exp 0.89 O(en)

Gradient Boosting exp 1.00 O(en)
SPINEX log 0.98 O(log n)

CatBoost poly 0.62* O(n0.12)

KNN poly 0.54* O(n0.25)
ARIMA poly 0.66* O(n0.42)

Bagging poly 0.83 O(n0.46)

Random Forest poly 0.84 O(n0.49)
SARIMA poly 0.93 O(n0.71)

Neural Network poly 0.85 O(n0.86)

LSTM poly 1.00 O(n0.93)
SVR poly 0.72 O(n1.36)

Gaussian Process poly 0.97 O(n1.72)
*note the low value. 810

4.5 Explainability analysis 811

To showcase the explainability capabilities of SPINEX, two synthetic datasets (No. 1 and No. 11) 812

are provided herein, as taken from two different datasets. Figure 8 shows the predicted segment 813

and three of its neighbors. The same plot also visually represents the neighbors and their overall 814

similarity as compared to the segment at hand. For example, this figure represents the top three 815

selected time segments that align the most with the current segment being investigated by SPINEX. 816

As one can see, the identified segments (i.e., neighbors) align well with the current segment – 817

which further showcases the applicability of SPINEX. The companion similarity score plot also, 818

visually, presents the importance of the similarity metrics selected by the user in each case and 819

notes how each similarity measure relates to the identified segments. Finally, this plot also shows 820

the individual scores of the similarity measures used to identify them. 821

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

39

 822

 823

(a) Dataset 1 824

 825

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

40

 826

(b) Dataset 11 827

Fig. 8 Example of explainability capability of SPINEX828

5.0 Conclusions 829

This paper introduces a novel member of the SPINEX (Similarity-based Predictions with Explainable 830

Neighbors Exploration) family. This new algorithm enhances time series analysis performance by 831

leveraging the concept of similarity, higher-order temporal interactions across multiple time scales, 832

and explainability. The effectiveness of the proposed SPINEX variant was evaluated through a 833

comprehensive benchmarking study involving 18 time series forecasting algorithms across 49 834

datasets. Our findings from our experiments indicate that SPINEX consistently ranks within the top-835

5 best-performing algorithms, showcasing its Pareto efficacy in time series forecasting and pattern 836

recognition while maintaining moderate computational complexity on the order of O(log n). 837

Moreover, the algorithm's explainability features, Pareto efficiency, and medium complexity are 838

demonstrated through detailed visualizations to enhance the prediction and decision-making 839

process. 840

Despite the noted positive findings, there are several promising avenues for future research to 841

further enhance SPINEX’s capabilities and applicability. To start with, this algorithm can be 842

extended to handle multivariate time series, which could broaden its use cases. Second, while 843

SPINEX dynamically adjusts its internal parameters, further exploration of adaptive mechanisms, 844

such as reinforcement learning or metaheuristics, could dynamically optimize hyperparameters 845

during runtime. It is also worth exploring options to further enhance the algorithmic scalability for 846

large datasets by using sparse similarity matrices or approximate methods for computationally 847

expensive metrics. We are hopeful to be able to imoprve the proposed algorithm in the near future. 848

In the meantime, we also invite interested readers to spearhead the aforementioned items, as w 849

Data Availability 850

Some or all data, models, or code that support the findings of this study are available from the 851

corresponding author upon reasonable request. 852

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

41

SPINEX can be accessed from [to be added]. 853

Conflict of Interest 854

The authors declare no conflict of interest. 855

References 856

[1] Hamilton, Time series analysis / James D. Hamilton., Time Ser. Anal. (1993). 857

[2] J.G. De Gooijer, R.J. Hyndman, 25 years of time series forecasting, Int. J. Forecast. (2006). 858

https://doi.org/10.1016/j.ijforecast.2006.01.001. 859

[3] M.D. Morse, J.M. Patel, An efficient and accurate method for evaluating time series 860

similarity, in: Proc. ACM SIGMOD Int. Conf. Manag. Data, 2007. 861

https://doi.org/10.1145/1247480.1247544. 862

[4] S. Aghabozorgi, A. Seyed Shirkhorshidi, T. Ying Wah, Time-series clustering - A decade 863

review, Inf. Syst. (2015). https://doi.org/10.1016/j.is.2015.04.007. 864

[5] S. Schmidl, P. Wenig, T. Papenbrock, Anomaly Detection in Time Series: A 865

Comprehensive Evaluation, in: Proc. VLDB Endow., 2022. 866

https://doi.org/10.14778/3538598.3538602. 867

[6] S. Lhermitte, J. Verbesselt, W.W. Verstraeten, P. Coppin, A comparison of time series 868

similarity measures for classification and change detection of ecosystem dynamics, Remote 869

Sens. Environ. (2011). https://doi.org/10.1016/j.rse.2011.06.020. 870

[7] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E. Keogh, Experimental 871

comparison of representation methods and distance measures for time series data, Data Min. 872

Knowl. Discov. (2013). https://doi.org/10.1007/s10618-012-0250-5. 873

[8] A. Abanda, U. Mori, J.A. Lozano, A review on distance based time series classification, 874

Data Min. Knowl. Discov. (2019). https://doi.org/10.1007/s10618-018-0596-4. 875

[9] H. Sakoe, S. Chiba, Dynamic Programming Algorithm Optimization for Spoken Word 876

Recognition, IEEE Trans. Acoust. (1978). https://doi.org/10.1109/TASSP.1978.1163055. 877

[10] Y. Permanasari, E.H. Harahap, E.P. Ali, Speech recognition using Dynamic Time Warping 878

(DTW), in: J. Phys. Conf. Ser., 2019. https://doi.org/10.1088/1742-6596/1366/1/012091. 879

[11] E. Kostadinova, V. Boeva, L. Boneva, E. Tsiporkova, An integrative DTW-based 880

imputation method for gene expression time series data, in: IS’2012 - 2012 6th IEEE Int. 881

Conf. Intell. Syst. Proc., 2012. https://doi.org/10.1109/IS.2012.6335145. 882

[12] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms, 883

in: Proc. - 7th Int. Symp. String Process. Inf. Retrieval, SPIRE 2000, 2000. 884

https://doi.org/10.1109/SPIRE.2000.878178. 885

[13] B.D. Fulcher, Feature-Based Time-Series Analysis, in: Featur. Eng. Mach. Learn. Data 886

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

42

Anal., 2018. https://doi.org/10.1201/9781315181080-4. 887

[14] K. Mirylenka, M. Dallachiesa, T. Palpanas, Data series similarity using correlation-aware 888

measures, in: ACM Int. Conf. Proceeding Ser., 2017. 889

https://doi.org/10.1145/3085504.3085515. 890

[15] J. Li, C. Xu, T. Zhang, Similarity Measure of Time Series Based on Siamese and Sequential 891

Neural Networks, in: Chinese Control Conf. CCC, 2020. 892

https://doi.org/10.23919/CCC50068.2020.9189261. 893

[16] Z. Karevan, J.A.K. Suykens, Transductive LSTM for time-series prediction: An application 894

to weather forecasting, Neural Networks. (2020). 895

https://doi.org/10.1016/j.neunet.2019.12.030. 896

[17] A. Theissler, F. Spinnato, U. Schlegel, R. Guidotti, Explainable AI for Time Series 897

Classification: A Review, Taxonomy and Research Directions, IEEE Access. (2022). 898

https://doi.org/10.1109/ACCESS.2022.3207765. 899

[18] A. Nielsen, Practical Time Series: Prediction with Statistics & Machine Learning., 2019. 900

[19] A. Babii, E. Ghysels, J. Striaukas, Machine Learning Time Series Regressions With an 901

Application to Nowcasting, J. Bus. Econ. Stat. (2022). 902

https://doi.org/10.1080/07350015.2021.1899933. 903

[20] Y. Ensafi, S.H. Amin, G. Zhang, B. Shah, Time-series forecasting of seasonal items sales 904

using machine learning – A comparative analysis, Int. J. Inf. Manag. Data Insights. (2022). 905

https://doi.org/10.1016/j.jjimei.2022.100058. 906

[21] G.M. Box, G. E. P., & Jenkins, Time series analysis: forecasting and control. San Francisco, 907

CA: Holden-Day., [University Wisconsut. Madison. WI Univ. OfLancaster, England]. 908

(1976). 909

[22] S. Makridakis, M. Hibon, ARMA models and the Box-Jenkins methodology, J. Forecast. 910

(1997). https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-911

FOR652>3.0.CO;2-X. 912

[23] J. Fattah, L. Ezzine, Z. Aman, H. El Moussami, A. Lachhab, Forecasting of demand using 913

ARIMA model, Int. J. Eng. Bus. Manag. (2018). 914

https://doi.org/10.1177/1847979018808673. 915

[24] J.D. Croston, Forecasting and Stock Control for Intermittent Demands, Oper. Res. Q. 916

(1972). https://doi.org/10.2307/3007885. 917

[25] A. Segerstedt, E. Levén, A Study of Different Croston-Like Forecasting Methods, Oper. 918

Supply Chain Manag. (2023). https://doi.org/10.31387/oscm0540400. 919

[26] J.E. Boylan, A.A. Syntetos, The accuracy of a Modified Croston procedure, Int. J. Prod. 920

Econ. (2007). https://doi.org/10.1016/j.ijpe.2006.10.005. 921

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

43

[27] R. Teunter, B. Sani, On the bias of Croston’s forecasting method, Eur. J. Oper. Res. (2009). 922

https://doi.org/10.1016/j.ejor.2007.12.001. 923

[28] O.L. Davies, R.G. Brown, Statistical Forecasting for Inventory Control., J. R. Stat. Soc. Ser. 924

A. (1960). https://doi.org/10.2307/2342487. 925

[29] C.C. Holt, Forecasting seasonals and trends by exponentially weighted moving averages, 926

Int. J. Forecast. (2004). https://doi.org/10.1016/j.ijforecast.2003.09.015. 927

[30] P.R. Winters, Forecasting Sales by Exponentially Weighted Moving Averages Author(s): 928

Peter R. Winters Source, Manage. Sci. (1960). 929

[31] C. Chatfield, M. Yar, Holt-Winters Forecasting: Some Practical Issues, Stat. (1988). 930

https://doi.org/10.2307/2348687. 931

[32] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Comput. (1997). 932

https://doi.org/10.1162/neco.1997.9.8.1735. 933

[33] C. Han, X. Fu, Challenge and Opportunity: Deep Learning-Based Stock Price Prediction by 934

Using Bi-Directional LSTM Model, Front. Business, Econ. Manag. (2023). 935

https://doi.org/10.54097/fbem.v8i2.6616. 936

[34] S.J. Taylor, B. Letham, Forecasting at Scale, Am. Stat. (2018). 937

https://doi.org/10.1080/00031305.2017.1380080. 938

[35] M. Daraghmeh, A. Agarwal, R. Manzano, M. Zaman, Time Series Forecasting using 939

Facebook Prophet for Cloud Resource Management, in: 2021 IEEE Int. Conf. Commun. 940

Work. ICC Work. 2021 - Proc., 2021. 941

https://doi.org/10.1109/ICCWorkshops50388.2021.9473607. 942

[36] I. Svetunkov, F. Petropoulos, Old dog, new tricks: a modelling view of simple moving 943

averages, Int. J. Prod. Res. (2018). https://doi.org/10.1080/00207543.2017.1380326. 944

[37] C. Chiarella, X. He, C.H. Hommes, A Dynamic Analysis of Moving Average Rules, SSRN 945

Electron. J. (2011). https://doi.org/10.2139/ssrn.742386. 946

[38] V. Assimakopoulos, K. Nikolopoulos, The theta model: A decomposition approach to 947

forecasting, Int. J. Forecast. (2000). https://doi.org/10.1016/S0169-2070(00)00066-2. 948

[39] E. Spiliotis, V. Assimakopoulos, S. Makridakis, Generalizing the Theta method for 949

automatic forecasting, Eur. J. Oper. Res. (2020). https://doi.org/10.1016/j.ejor.2020.01.007. 950

[40] J.H. Stock, M.W. Watson, Vector autoregressions, J. Econ. Perspect. (2001). 951

https://doi.org/10.1257/jep.15.4.101. 952

[41] C.J. Lu, T.S. Lee, C.C. Chiu, Financial time series forecasting using independent component 953

analysis and support vector regression, Decis. Support Syst. (2009). 954

https://doi.org/10.1016/j.dss.2009.02.001. 955

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

44

[42] F. Canova, 53 2 Vector Autoregressive Models: Specification, Estimation, Inference, and 956

Forecasting, Handb. Appl. Econom. (1999). 957

[43] C.K.I. Williams, C.E. Rasmussen, Gaussian Processes for Regression, Adv. Neural Inf. 958

Process. Syst. 8 (1995). 959

[44] S. Aigrain, D. Foreman-Mackey, Gaussian Process Regression for Astronomical Time 960

Series, Annu. Rev. Astron. Astrophys. (2023). https://doi.org/10.1146/annurev-astro-961

052920-103508. 962

[45] J.P. Cunningham, Z. Ghahramani, C.E. Rasmussen, Gaussian Processes for time-marked 963

time-series data, in: J. Mach. Learn. Res., 2012. 964

[46] L.P. Swiler, M. Gulian, A.L. Frankel, C. Safta, J.D. Jakeman, A SURVEY OF 965

CONSTRAINED GAUSSIAN PROCESS REGRESSION: APPROACHES AND 966

IMPLEMENTATION CHALLENGES, J. Mach. Learn. Model. Comput. (2020). 967

https://doi.org/10.1615/jmachlearnmodelcomput.2020035155. 968

[47] L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin, Catboost: Unbiased 969

boosting with categorical features, in: Adv. Neural Inf. Process. Syst., 2018. 970

[48] J.T. Hancock, T.M. Khoshgoftaar, CatBoost for big data: an interdisciplinary review, J. Big 971

Data. (2020). https://doi.org/10.1186/s40537-020-00369-8. 972

[49] S.R. Karingula, N. Ramanan, R. Tahmasbi, M. Amjadi, D. Jung, R. Si, C. Thimmisetty, 973

L.F. Polania, M. Sayer, J. Taylor, C.N. Coelho, Boosted Embeddings for Time-Series 974

Forecasting, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. 975

Notes Bioinformatics), 2022. https://doi.org/10.1007/978-3-030-95470-3_1. 976

[50] Y.H. Lee, C.P. Wei, T.H. Cheng, C.T. Yang, Nearest-neighbor-based approach to time-977

series classification, Decis. Support Syst. (2012). https://doi.org/10.1016/j.dss.2011.12.014. 978

[51] G. Lin, A. Lin, J. Cao, Multidimensional KNN algorithm based on EEMD and complexity 979

measures in financial time series forecasting, Expert Syst. Appl. (2021). 980

https://doi.org/10.1016/j.eswa.2020.114443. 981

[52] G.P. Zhang, D.M. Kline, Quarterly time-series forecasting with neural networks, IEEE 982

Trans. Neural Networks. (2007). https://doi.org/10.1109/TNN.2007.896859. 983

[53] S.F. Crone, M. Hibon, K. Nikolopoulos, Advances in forecasting with neural networks? 984

Empirical evidence from the NN3 competition on time series prediction, Int. J. Forecast. 985

(2011). https://doi.org/10.1016/j.ijforecast.2011.04.001. 986

[54] L. Breiman, Random Forests, Mach. Learn. 45 (2001) 5–32. 987

https://doi.org/10.1023/A:1010933404324. 988

[55] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Proc. ACM SIGKDD 989

Int. Conf. Knowl. Discov. Data Min., 2016. https://doi.org/10.1145/2939672.2939785. 990

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

45

[56] J. Luo, Z. Zhang, Y. Fu, F. Rao, Time series prediction of COVID-19 transmission in 991

America using LSTM and XGBoost algorithms, Results Phys. (2021). 992

https://doi.org/10.1016/j.rinp.2021.104462. 993

[57] X. Qiu, L. Zhang, P. Nagaratnam Suganthan, G.A.J. Amaratunga, Oblique random forest 994

ensemble via Least Square Estimation for time series forecasting, Inf. Sci. (Ny). (2017). 995

https://doi.org/10.1016/j.ins.2017.08.060. 996

[58] C. Cortes, V. Vapnik, Support-Vector Networks, Mach. Learn. (1995). 997

https://doi.org/10.1023/A:1022627411411. 998

[59] J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, M. Anthony, Structural risk minimization 999

over data-dependent hierarchies, IEEE Trans. Inf. Theory. (1998). 1000

https://doi.org/10.1109/18.705570. 1001

[60] N. Sapankevych, R. Sankar, Time series prediction using support vector machines: A 1002

survey, IEEE Comput. Intell. Mag. (2009). https://doi.org/10.1109/MCI.2009.932254. 1003

[61] M.Z. Naser, · Amir, H. Alavi, A.H. Alavi, · Amir, H. Alavi, Error Metrics and Performance 1004

Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and 1005

Sciences, Archit. Struct. Constr. 1 (2021) 1–19. 1006

https://doi.org/https://doi.org/10.1007/s44150-021-00015-8. 1007

[62] D.S.K. Karunasingha, Root mean square error or mean absolute error? Use their ratio as 1008

well, Inf. Sci. (Ny). (2022). https://doi.org/10.1016/j.ins.2021.11.036. 1009

[63] C. Chen, J. Twycross, J.M. Garibaldi, A new accuracy measure based on bounded relative 1010

error for time series forecasting, PLoS One. (2017). 1011

https://doi.org/10.1371/journal.pone.0174202. 1012

[64] R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy, Int. J. 1013

Forecast. (2006). https://doi.org/10.1016/j.ijforecast.2006.03.001. 1014

[65] P.H. Franses, A note on the Mean Absolute Scaled Error, Int. J. Forecast. (2016). 1015

https://doi.org/10.1016/j.ijforecast.2015.03.008. 1016

[66] R.J. Kate, Using dynamic time warping distances as features for improved time series 1017

classification, Data Min. Knowl. Discov. (2016). https://doi.org/10.1007/s10618-015-0418-1018

x. 1019

[67] U. Khair, H. Fahmi, S. Al Hakim, R. Rahim, Forecasting Error Calculation with Mean 1020

Absolute Deviation and Mean Absolute Percentage Error, in: J. Phys. Conf. Ser., 2017. 1021

https://doi.org/10.1088/1742-6596/930/1/012002. 1022

[68] J. Brownlee, Airline Passengers, (2017). 1023

[69] J. Brownlee, Sunspots, (2017). 1024

[70] J. Brownlee, Daily Female Births, (2017). 1025

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

46

[71] J. Brownlee, Yearly Water Usage, (2017). 1026

[72] J. Brownlee, Daily Minimum Temperatures, (2017). 1027

[73] J. Brownlee, Monthly Car Sales, (2017). 1028

[74] J. Brownlee, Shampoo Sales Data, (2017). 1029

[75] J. Brownlee, Temperature Data, (2017). 1030

[76] J. Brownlee, Monthly Writing Paper Sales, (2017). 1031

[77] J. Brownlee, Monthly Champagne Sales, (2017). 1032

[78] J. Brownlee, Monthly Robberies, (2017). 1033

[79] E. Gao, Electric Production, (2018). 1034

[80] S. Subikshaa, Web Traffic Dataset, (2019). 1035

[81] I. Kim, Stock and PM2.5 Prediction, (2020). 1036

[82] M. Jennings, Tata Global Forecasting, (2020). 1037

[83] N. Volfango, International Airline Passengers, (2020). 1038

[84] J. Brownlee, Pollution Dataset, (2017). 1039

[85] ReadyTensor, Daily Stock Prices, (2021). 1040

[86] Z. Haoyi, ETT-small, (2020). 1041

[87] R. Dey, Jaipur Final Clean Data, (2020). 1042

[88] B. Ciranni, Aprocessed, (2021). 1043

[89] K. Krishnan, Insurance, (2019). 1044

[90] S. Chake, Indian Crime Data Analysis Forecasting, (2020). 1045

[91] A.E. Ezugwu, A.M. Ikotun, O.O. Oyelade, L. Abualigah, J.O. Agushaka, C.I. Eke, A.A. 1046

Akinyelu, A comprehensive survey of clustering algorithms: State-of-the-art machine 1047

learning applications, taxonomy, challenges, and future research prospects, Eng. Appl. 1048

Artif. Intell. (2022). https://doi.org/10.1016/j.engappai.2022.104743. 1049

[92] A. Shahraki, A. Taherkordi, O. Haugen, F. Eliassen, A Survey and Future Directions on 1050

Clustering: From WSNs to IoT and Modern Networking Paradigms, IEEE Trans. Netw. 1051

Serv. Manag. (2021). https://doi.org/10.1109/TNSM.2020.3035315. 1052

[93] Y. Perez-Riverol, J.A. Vizcaíno, J. Griss, Future Prospects of Spectral Clustering 1053

Approaches in Proteomics, Proteomics. (2018). https://doi.org/10.1002/pmic.201700454. 1054

[94] W. Xiao, J. Hu, A Survey of Parallel Clustering Algorithms Based on Spark, Sci. Program. 1055

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

47

(2020). https://doi.org/10.1155/2020/8884926. 1056

 1057

 1058

 1059

 1060

 1061

 1062

 1063

 1064

 1065

 1066

 1067

 1068

 1069

 1070

 1071

 1072

 1073

 1074

 1075

 1076

 1077

 1078

 1079

 1080

 1081

 1082

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

48

Appendix 1083

The complete class of SPINEX is shown below. SPINEX can be installed via: pip install 1084

spinex_timeseries 1085

@jit(nopython= Tr ue) 1086

def numba_ dtw(x, y): 1087

 n, m = len(x), len(y) 1088

 dtw_matrix = np.zeros((n+1, m+1)) 1089

 for i in range(1, n+1): 1090

 for j in range(1, m+1): 1091

 cost = abs(x[i-1] - y[j-1]) 1092

 dtw_matrix[i, j] = cost + min(dtw_matrix[i-1, j], dtw_matrix[i, j-1], dtw_matrix[i-1, j-1]) 1093

 return dtw_matrix[n, m] 1094

 1095

@jit(nopython= Tr ue) 1096

def numba_ dtw_ similar ity(X): 1097

 n = X.shape[0] 1098

 sim_matrix = np.zeros((n, n)) 1099

 for i in range(n): 1100

 for j in range(i, n): 1101

 dist = numba_dtw(X[i], X[j]) 1102

 sim_matrix[i, j] = sim_matrix[j, i] = 1 / (1 + dist) 1103

 return sim_matrix 1104

 1105

@jit(nopython= Tr ue) 1106

def numba_ sample_ entr opy(x, m= 2, r = 0 .2): 1107

 n = len(x) 1108

 B = 0.0 1109

 A = 0.0 1110

 for i in range(n - m): 1111

 for j in range(i + 1, n - m): 1112

 matches = 0 1113

 for k in range(m): 1114

 if abs(x[i+k] - x[j+k]) <= r: 1115

 matches += 1 1116

 else: 1117

 break 1118

 if matches == m: 1119

 B += 1 1120

 if abs(x[i+m] - x[j+m]) <= r: 1121

 A += 1 1122

 return -np.log((A + 1e-10) / (B + 1e-10)) 1123

 1124

def dir ection_ accur acy(segment1, segment2): 1125

 direction1 = np.sign(np.diff(segment1)) 1126

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

49

 direction2 = np.sign(np.diff(segment2)) 1127

 return np.mean(direction1 == direction2) 1128

 1129

c lass SP INEX_ Timeser ies: 1130

 def _ _ init_ _ (self , data, window_ size= None, for ecast_ hor izon= 1, similar ity_ methods= None, 1131

 dynamic_ window= Tr ue, multi_ level= Tr ue, dynamic_ thr eshold= Tr ue): 1132

 self .data = np.ar r ay(data) 1133

 if window_size is None: 1134

 self.window_size = max(10, len(data) // 10) 1135

 else: 1136

 self.window_size = min(window_size, len(data) // 2) 1137

 self.forecast_horizon = min(forecast_horizon, len(data) // 10) 1138

 self.forecast_horizon = forecast_horizon 1139

 self.similarity_methods = similarity_methods if similarity_methods else ['cosine', 'euclidean', 'dtw'] 1140

 self.similarity_cache = {} 1141

 self.dynamic_window = dynamic_window 1142

 self.multi_level = multi_level 1143

 self.dynamic_threshold = dynamic_threshold 1144

 self.segments_cache = {} 1145

 self.recent_errors = [] 1146

 self.recent_similarity_scores = [] 1147

 if self.dynamic_window: 1148

 self.window_size = self.adaptive_window_size() 1149

 1150

 @staticmethod 1151

 def hash_ ar r ay(ar r): 1152

 return hashlib.md5(arr.data.tobytes()).hexdigest() 1153

 1154

 @lr u_ cache(maxsize= 128) 1155

 def get_ similar ity_ matr ix(self , method, segments_ hash): 1156

 if (segments_hash, method) in self.similarity_cache: 1157

 return self.similarity_cache[(segments_hash, method)] 1158

 segments = self.segments_cache[segments_hash] 1159

 if method == 'cosine': 1160

 similarity_matrix = self.cosine_similarity(segments) 1161

 elif method == 'correlation': 1162

 similarity_matrix = self.correlation_similarity(segments) 1163

 elif method == 'euclidean': 1164

 similarity_matrix = self.euclidean_similarity(segments) 1165

 elif method == 'spearman': 1166

 similarity_matrix = self.spearman_similarity(segments) 1167

 elif method == 'dtw': 1168

 similarity_matrix = numba_dtw_similarity(segments) 1169

 elif method == 'direction': 1170

 similarity_matrix = self.direction_similarity(segments) 1171

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

50

 else: 1172

 raise ValueError(f"Invalid similarity method: {method}") 1173

 self.similarity_cache[(segments_hash, method)] = similarity_matrix 1174

 return similarity_matrix 1175

 1176

 @staticmethod 1177

 def cosine_ similar ity(X): 1178

 norm = np.linalg.norm(X, axis=1) 1179

 return np.dot(X, X.T) / np.outer(norm, norm) 1180

 1181

 @staticmethod 1182

 def cor r elation_ similar ity(X): 1183

 return np.corrcoef(X) 1184

 1185

 @staticmethod 1186

 def euc l idean_ similar ity(X): 1187

 sq_dists = cdist(X, X, metric='euclidean')**2 1188

 return 1 / (1 + np.sqrt(sq_dists)) 1189

 1190

 @staticmethod 1191

 def spear man_ similar ity(X): 1192

 return spearmanr(X.T)[0] 1193

 1194

 def adjust_ dynamic_ par ameter s(self): 1195

 MIN_WINDOW_SIZE = 10 1196

 MAX_WINDOW_SIZE = len(self.data) // 2 1197

 BASELINE_WINDOW_SIZE = max(MIN_WINDOW_SIZE, len(self.data) // 10) 1198

 if len(self.data) > BASELINE_WINDOW_SIZE: 1199

 volatility = np.std(self.data[-BASELINE_WINDO W_SIZE:]) 1200

 else: 1201

 volatility = np.std(self.data) 1202

 scale_factor = np.clip(volatility, 0.1, 1.0) # Limiting scale factor to avoid extreme values 1203

 self.window_size = int(MAX_WINDOW_SIZE / scale_factor) 1204

 self.window_size = max(MIN_WINDOW_SIZE, min(self.window_size, MAX_WINDOW_SIZE)) 1205

 if hasattr(self, 'recent_errors'): 1206

 recent_error_mean = np.mean(self.recent_errors) 1207

 recent_error_std = np.std(self.recent_errors) 1208

 threshold_adjustment = recent_error_mean + recent_error_std 1209

 else: 1210

 threshold_adjustment = 0 1211

 if hasattr(self, 'recent_similarity_scores') and self.recent_similarity_scores: 1212

 mean_sim = np.mean(self.recent_similarity_scores) 1213

 std_sim = np.std(self.recent_similarity_scores) 1214

 self.threshold = mean_sim + std_sim + threshold_adjustment 1215

 else: 1216

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

51

 self.threshold = 0.5 # Default threshold if no recent similarities are recorded 1217

 print(f"Adjusted Window Size: {self.window_size}, Threshold: {self.threshold}") 1218

 1219

 def get_ dynamic_ thr eshold(self , similar ities): 1220

 if self.dynamic_threshold: 1221

 mean_sim = np.mean(similarities) 1222

 std_sim = np.std(similarities) 1223

 base_threshold = mean_sim + std_sim 1224

 if len(similarities[similarities > base_threshold]) < 5: 1225

 # If less than 5 indices are above threshold, reduce it to include more indices 1226

 adjusted_threshold = np.percentile(similarities, 90) # Adjusting percentile upward 1227

 else: 1228

 adjusted_threshold = base_threshold 1229

 print(f"Dynamic Threshold Adjusted: {adjusted_threshold}") 1230

 return adjusted_threshold 1231

 else: 1232

 return np.percentile(similarities, 95) 1233

 1234

 def adjusted_ dtw_ similar ity(self , X): 1235

 dtw_scores = numba_dtw_similarity(X) 1236

 adjusted_scores = 1 / (1 + np.sqrt(dtw_scores)) # Squaring DTW scores for more lenience 1237

 return adjusted_scores 1238

 1239

 def plot_ pr edic tion(self): 1240

 predicted_values = self.predict() 1241

 if predicted_values.size > 0: 1242

 prediction_start_index = len(self.data) - self.forecast_horizon 1243

 plt.figure(figsize=(12, 6)) 1244

 plt.plot(self.data, label='Actual Time Series', color='blue') 1245

 plt.plot(np.arange(prediction_start_index, len(self.data)), 1246

 self.data[prediction_start_index:], label='Actual (Prediction Window)', color='green') 1247

 plt.plot(np.arange(prediction_start_index, len(self.data)), 1248

 predicted_values, label='Predicted', color='red', linestyle='--') 1249

 plt.title('Time Series Prediction Comparison') 1250

 plt.xlabel('Time Index') 1251

 plt.ylabel('Values') 1252

 plt.legend() 1253

 plt.show() 1254

 else: 1255

 print("No valid predictions could be made.") 1256

 1257

 @lr u_ cache(maxsize= 32) 1258

 def extr act_ segments(self , window_ size= None): 1259

 if window_size is None: 1260

 window_size = self.adaptive_window_size() 1261

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

52

 data_length = len(self.data) 1262

 if data_length < window_size: 1263

 print(f"Data length ({data_length}) is less than window size ({window_size}). Adjusting window size.") 1264

 window_size = data_length // 2 # Use half of data length as window size 1265

 n = data_length - window_size + 1 1266

 if n <= 1: 1267

 return np.array([self.data[-window_size:]]) 1268

 segments = np.lib.stride_tricks.sliding_window_view(self.data, window_size) 1269

 segment_means = np.mean(segments, axis=1) 1270

 segment_stds = np.std(segments, axis=1) 1271

 normalized_segments = (segments - segment_means[:, np.newaxis]) / (segment_stds[:, np.newaxis] + 1e-8) 1272

 return normalized_segments 1273

 def find_similar_segments(self): 1274

 window_sizes = [self.window_size] 1275

 if self.multi_level: 1276

 window_sizes = [max(2, self.window_size // 2)] + window_sizes + [min(len(self.data) // 4, self.window_size * 1277

2)] 1278

 all_similarities = [] 1279

 for w_size in window_sizes: 1280

 segments = self.extract_segments(w_size) 1281

 if len(segments) < 2: 1282

 print(f"Not enough segments for window size {w_size}, skipping.") 1283

 continue 1284

 segments_hash = self.hash_array(segments) 1285

 self.segments_cache[segments_hash] = segments 1286

 method_similarities = [] 1287

 for method in self.similarity_methods: 1288

 if method == 'dtw' and len(segments) > 500: 1289

 print(f"DTW skipped for large dataset with {len(segments)} segments.") 1290

 continue 1291

 try: 1292

 sim_matrix = self.get_similarity_matrix(method, segments_hash) 1293

 if sim_matrix.ndim > 1: 1294

 method_similarities.append(sim_matrix[-1, :-1]) 1295

 else: 1296

 method_similarities.append(sim_matrix[:-1]) 1297

 except Exception as e: 1298

 print(f"Error calculating similarity for method {method}: {str(e)}") 1299

 if not method_similarities: 1300

 print(f"No valid similarity methods for window size {w_size}, skipping.") 1301

 continue 1302

 min_length = min(len(sim) for sim in method_similarities) 1303

 method_similarities = [sim[-min_length:] for sim in method_similarities] 1304

 method_similarities_array = np.array(method_similarities) 1305

 overall_similarity = np.nanmean(method_similarities_array, axis=0) 1306

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

53

 all_similarities.append(overall_similarity) 1307

 if not all_similarities: 1308

 print("No similarities found for any window size. Using fallback similarity.") 1309

 return self.fallback_similarity_method() 1310

 min_length = min(len(s) for s in all_similarities) 1311

 all_similarities = [s[-min_length:] for s in all_similarities] 1312

 all_similarities_array = np.array(all_similarities) 1313

 combined_similarities = np.nanmean(all_similarities_array, axis=0) 1314

 return combined_similarities 1315

 1316

 def fal lback_ similar ity_ method(self): 1317

 # Simple autocorrelation-based similarity 1318

 acf = np.correlate(self.data, self.data, mode='full')[len(self.data)-1:] 1319

 return acf / acf[0] # Normalize 1320

 1321

 def analyze_ segment_ similar ity(self , segment_ index): 1322

 current_segment = self.extract_segments(self.window_size)[-1] 1323

 historical_segment = self.extract_segments(self.window_size)[segment_index] 1324

 similarity_scores = {} 1325

 for method in self.similarity_methods: 1326

 if method == 'cosine': 1327

 score = np.dot(current_segment, historical_segment) / (np.linalg.norm(current_segment) * 1328

np.linalg.norm(historical_segment)) 1329

 elif method == 'euclidean': 1330

 score = 1 / (1 + np.linalg.norm(current_segment - historical_segment)) 1331

 elif method == 'dtw': 1332

 score = 1 / (1 + numba_dtw(current_segment, historical_segment)) # Use the global function 1333

 similarity_scores[method] = score 1334

 feature_contributions = np.abs(current_segment - historical_segment) 1335

 top_contributing_features = np.argsort(feature_contributions)[::-1][:5] 1336

 return { 1337

 'similarity_scores': similarity_scores, 1338

 'top_contributing_features': top_contributing_features.tolist(), 1339

 'feature_contributions': feature_contributions.tolist() 1340

 } 1341

 1342

 def get_ near est_ neighbor s(self , k= 5): 1343

 similarities = self.find_similar_segments() 1344

 nearest_indices = np.argsort(similarities)[::-1][:k] 1345

 return [(idx, similarities[idx]) for idx in nearest_indices] 1346

 1347

 def dtw_ similar ity(self , X): 1348

 return numba_dtw_similarity(X) # Use the global function 1349

 1350

 def adaptive_ window_ size(self): 1351

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

54

 data_length = len(self.data) 1352

 if data_length < 100: 1353

 base_window = max(2, data_length // 20) 1354

 elif data_length < 1000: 1355

 base_window = max(5, data_length // 40) 1356

 else: 1357

 base_window = max(25, data_length // 80) 1358

 potential_seasons = self.detect_seasonality() 1359

 variability = np.std(self.data) / (np.mean(self.data) + 1e-8) 1360

 if potential_seasons: 1361

 window = min(max(potential_seasons), base_window) 1362

 else: 1363

 window = int(base_window * (1 + variability)) 1364

 return max(2, min(window, data_length // 8)) # Ensure window is at most 1/8 of data length 1365

 1366

 def detect_ seasonality(self , max_ lag= None): 1367

 if max_lag is None: 1368

 max_lag = len(self.data) // 2 1369

 acf = np.correlate(self.data, self.data, mode='full')[-max_lag:] 1370

 peaks = np.where((acf[1:-1] > acf[:-2]) & (acf[1:-1] > acf[2:]))[0] + 1 1371

 if len(peaks) > 0: 1372

 return [int(peaks[0])] # Return a list with the first peak 1373

 return [] # Return an empty list if no peaks found 1374

 def detect_anomalies(self, threshold_percentile=2): 1375

 segments = self.extract_segments(self.window_size) 1376

 similarities = self.find_similar_segments() 1377

 threshold = np.percentile(similarities, threshold_percentile) 1378

 anomaly_indices = np.where(similarities < threshold)[0] 1379

 anomalies = [] 1380

 for idx in anomaly_indices: 1381

 start = idx 1382

 end = idx + self.window_size 1383

 anomalies.append({ 1384

 'start_index': start, 1385

 'end_index': end, 1386

 'segment': self.data[start:end].tolist(), 1387

 'similarity_score': similarities[idx] 1388

 }) 1389

 return anomalies, threshold 1390

 1391

 def plot_ anomalies(self , thr eshold_ per centi le= 5): 1392

 anomalies, threshold = self.detect_anomalies(threshold_percentile) 1393

 plt.figure(figsize=(12, 6)) 1394

 plt.plot(self.data, label='Time Series', color='blue') 1395

 for anomaly in anomalies: 1396

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

55

 plt.axvspan(anomaly['start_index'], anomaly['end_index'], color='red', alpha=0.3) 1397

 plt.title(f'Time Series with Detected Anomalies (Threshold: {threshold:.4f})') 1398

 plt.xlabel('Time Index') 1399

 plt.ylabel('Values') 1400

 plt.legend() 1401

 if not anomalies: 1402

 plt.text(0.5, 0.5, 'No anomalies detected', horizontalalignment='center', 1403

 verticalalignment='center', transform=plt.gca().transAxes) 1404

 else: 1405

 print(f"Detected {len(anomalies)} anomalies") 1406

 plt.show() 1407

 1408

 similarities = self.find_similar_segments() 1409

 print(f"Similarity score range: {similarities.min():.4f} to {similarities.max():.4f}") 1410

 print(f"Similarity score mean: {similarities.mean():.4f}") 1411

 print(f"Similarity score median: {np.median(similarities):.4f}") 1412

 print(f"Anomaly threshold: {threshold:.4f}") 1413

 1414

 def calculate_ mean_ squar ed_ er r or (self , ac tual, pr edic ted): 1415

 return np.mean((actual - predicted) ** 2) 1416

 1417

 def calculate_ basic_ similar ity(self , ac tual, pr edic ted): 1418

 # Ensuring that neither actual nor predicted are empty to avoid runtime errors 1419

 if actual.size == 0 or predicted.size == 0: 1420

 return np.nan 1421

 correlation = np.corrcoef(actual, predicted)[0, 1] 1422

 return correlation 1423

 1424

 def fal lback_ pr edic tion(self , num_ points): 1425

 if len(self.data) < num_points * 2: 1426

 raise ValueError("Insufficient data for prediction") 1427

 def adaptive_window(data): 1428

 def mse(window): 1429

 trend = extract_trend(data, int(window)) 1430

 return np.mean((data[int(window)-1:] - trend)**2) 1431

 result = minimize_scalar(mse, bounds=(10, len(data)//2), method='bounded') 1432

 return int(result.x) 1433

 1434

 def extr act_ tr end(data, window_ size): 1435

 return np.convolve(data, np.ones(window_size), 'valid') / window_size 1436

 1437

 def detect_ seasonalities(data, max_ per iod, num_ seasons= 2): 1438

 correlations = [np.corrcoef(data[:-i], data[i:])[0, 1] for i in range(1, max_period)] 1439

 seasons = [] 1440

 for _ in range(num_seasons): 1441

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

56

 if len(correlations) > 0: 1442

 season = np.argmax(correlations) + 1 1443

 seasons.append(season) 1444

 correlations[season-1] = -1 # Remove detected season 1445

 return seasons 1446

 1447

 def model_ nonlinear _ tr end(data, x): 1448

 coeffs = np.polyfit(x, data, 3) 1449

 return np.poly1d(coeffs) 1450

 1451

 def detect_ anomalies(data, thr eshold= 3): 1452

 mean = np.mean(data) 1453

 std = np.std(data) 1454

 return np.abs(data - mean) > threshold * std 1455

 window_size = adaptive_window(self.data) 1456

 trend = extract_trend(self.data, window_size) 1457

 detrended = self.data[window_size-1:] - trend 1458

 seasonality_periods = detect_seasonalities(detrended, num_points) 1459

 seasonals = [] 1460

 for period in seasonality_periods: 1461

 seasonal = np.zeros(period) 1462

 for i in range(period): 1463

 seasonal[i] = np.mean(detrended[i::period]) 1464

 seasonals.append(seasonal) 1465

 combined_seasonal = np.zeros_like(detrended) 1466

 for seasonal in seasonals: 1467

 combined_seasonal += np.tile(seasonal, len(detrended) // len(seasonal) + 1)[:len(detrended)] 1468

 residuals = detrended - combined_seasonal[:len(detrended)] 1469

 anomalies = detect_anomalies(residuals) 1470

 cleaned_residuals = residuals.copy() 1471

 cleaned_residuals[anomalies] = np.median(residuals) 1472

 x = np.arange(len(self.data)) 1473

 trend_model = model_nonlinear_trend(self.data, x) 1474

 future_x = np.arange(len(self.data), len(self.data) + self.forecast_horizon) 1475

 future_trend = trend_model(future_x) 1476

 future_seasonal = np.zeros(self.forecast_horizon) 1477

 for seasonal in seasonals: 1478

 future_seasonal += np.tile(seasonal, self.forecast_horizon // len(seasonal) + 1)[:self.forecast_horizon] 1479

 1480

 def pr edic t_ r esiduals_ with_ c i(r esiduals, hor izon, confidence= 0.95): 1481

 weights = np.exp(np.linspace(-1, 0, len(residuals))) 1482

 weighted_mean = np.sum(residuals * weights) / np.sum(weights) 1483

 weighted_std = np.sqrt(np.sum(weights * (residuals - weighted_mean)**2) / np.sum(weights)) 1484

 predictions = np.random.normal(weighted_mean, weighted_std, (1000, horizon)) 1485

 mean_prediction = np.mean(predictions, axis=0) 1486

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

57

 ci_lower = np.percentile(predictions, (1 - confidence) / 2 * 100, axis=0) 1487

 ci_upper = np.percentile(predictions, (1 + confidence) / 2 * 100, axis=0) 1488

 return mean_prediction, ci_lower, ci_upper 1489

 future_residuals, ci_lower, ci_upper = predict_residuals_with_ci(cleaned_residuals, self.forecast_horizon) 1490

 predictions = future_trend + future_seasonal + future_residuals 1491

 ci_lower += future_trend + future_seasonal 1492

 ci_upper += future_trend + future_seasonal 1493

 return predictions, ci_lower, ci_upper 1494

 1495

 def tune_ hyper par ameter s(self): 1496

 # Example: tune the number of seasonalities to detect 1497

 best_num_seasons = 1 1498

 best_mse = float('inf') 1499

 for num_seasons in range(1, 5): 1500

 predictions, _, _ = self.fallback_prediction(num_points=20) 1501

 mse = np.mean((self.data[-len(predictions):] - predictions)**2) 1502

 if mse < best_mse: 1503

 best_mse = mse 1504

 best_num_seasons = num_seasons 1505

 return {'num_seasons': best_num_seasons} 1506

 1507

 def pr edic t(self): 1508

 self.adjust_dynamic_parameters() 1509

 try: 1510

 similarities = self.find_similar_segments() 1511

 if len(similarities) == 0: 1512

 print("No similarities found. Using fallback prediction.") 1513

 return self.fallback_prediction(self.forecast_horizon)[0] 1514

 threshold = self.get_dynamic_threshold(similarities) 1515

 valid_indices = [] 1516

 for percentile in range(95, 70, -5): # Start at 95th percentile, go down to 70th 1517

 top_indices = np.where(similarities > np.percentile(similarities, percentile))[0] 1518

 valid_indices = top_indices[top_indices + self.window_size + self.forecast_horizon <= len(self.data)] 1519

 if len(valid_indices) >= 3: 1520

 break 1521

 if len(valid_indices) == 0: 1522

 print("No valid indices found. Using fallback prediction.") 1523

 return self.fallback_prediction(self.forecast_horizon)[0] 1524

 predictions = [] 1525

 weights = [] 1526

 for idx in valid_indices: 1527

 start = idx + self.window_size 1528

 end = start + self.forecast_horizon 1529

 if end <= len(self.data): 1530

 segment = self.data[start:end] 1531

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

58

 predictions.append(segment) 1532

 weights.append(similarities[idx]) 1533

 if predictions: 1534

 min_length = min(len(p) for p in predictions) 1535

 predictions = [p[:min_length] for p in predictions] 1536

 predictions = np.array(predictions) 1537

 weights = np.array(weights) 1538

 last_actual = self.data[-1] 1539

 for i in range(len(predictions)): 1540

 shift = last_actual - predictions[i][0] 1541

 predictions[i] += shift 1542

 predicted_values = np.average(predictions, axis=0, weights=weights) 1543

 else: 1544

 print("No valid predictions. Using fallback prediction.") 1545

 predicted_values = self.fallback_prediction(self.forecast_horizon)[0] 1546

 except Exception as e: 1547

 print(f"Error in predict: {str(e)}") 1548

 predicted_values = self.fallback_prediction(self.forecast_horizon)[0] # Return only predictions, not CI 1549

 if predicted_values.size > 0: 1550

 actual_values = self.data[-len(predicted_values):] 1551

 prediction_error = self.calculate_mean_squared_error(actual_values, predicted_values) 1552

 recent_similarity_score = self.calculate_basic_similarity(actual_values, predicted_values) 1553

 self.update_recent_performance(prediction_error, recent_similarity_score) 1554

 else: 1555

 self.update_recent_performance(np.nan, np.nan) 1556

 return predicted_values 1557

 1558

 def update_ r ecent_ per for mance(self , new_ er r or , new_ similar ity_ scor e): 1559

 self.recent_errors.append(new_error) 1560

 self.recent_similarity_scores.append(new_similarity_score) 1561

 # Optionally, trim these lists to avoid unlimited growth 1562

 self.recent_errors = self.recent_errors[-100:] # Keep the last 100 records 1563

 self.recent_similarity_scores = self.recent_similarity_scores[-100:] 1564

 1565

 def evaluate_ pr edic tion(self , ac tual, pr edic ted): 1566

 if len(actual) != len(predicted): 1567

 raise ValueError("Actual and predicted arrays must have the same length.") 1568

 if len(actual) == 0: 1569

 return {metric: np.nan for metric in ['MSE', 'MAE', 'RMSE', 'MAPE', 'SMAPE', 'R-squared', 'Direction Accuracy', 1570

'Theil\'s U']} 1571

 mse = np.mean((actual - predicted) ** 2) 1572

 mae = np.mean(np.abs(actual - predicted)) 1573

 rmse = np.sqrt(mse) 1574

 mape = np.mean(np.abs((actual - predicted) / (actual + 1e-8))) * 100 1575

 smape = np.mean(2 * np.abs(predicted - actual) / (np.abs(actual) + np.abs(predicted) + 1e-8)) * 100 1576

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

59

 r2 = r2_score(actual, predicted) 1577

 direction_actual = np.sign(np.diff(actual)) 1578

 direction_pred = np.sign(np.diff(predicted)) 1579

 direction_accuracy = np.mean(direction_actual == direction_pred) * 100 1580

 actual_changes = np.diff(actual) 1581

 predicted_changes = np.diff(predicted) 1582

 theil_u = np.sqrt(np.sum(predicted_changes**2) / np.sum(actual_changes**2)) if np.sum(actual_changes**2) != 1583

0 else np.nan 1584

 return { 1585

 'MSE': mse, 'MAE': mae, 'RMSE': rmse, 'MAPE': mape, 'SMAPE': smape, 1586

 'R-squared': r2, 'Direction Accuracy': direction_accuracy, 'Theil\'s U': theil_u 1587

 } 1588

 1589

 def val idate_ pr edic tion(self , spl its= 3): 1590

 n_samples = len(self.data) 1591

 max_splits = (n_samples - self.window_size) // self.forecast_horizon 1592

 splits = min(splits, max_splits) 1593

 if splits < 2: 1594

 print("Warning: Not enough data for multiple splits. Performing single train-test split.") 1595

 train_size = int(0.8 * n_samples) 1596

 train, test = self.data[:train_size], self.data[train_size:] 1597

 self.data = train 1598

 self.similarity_cache = {} 1599

 predicted = self.predict() 1600

 if predicted.size > 0: 1601

 actual = test[:len(predicted)] 1602

 metrics = self.evaluate_prediction(actual, predicted) 1603

 self.data = np.concatenate((train, test)) # Restore original data 1604

 return metrics 1605

 else: 1606

 print("Insufficient data to make a prediction.") 1607

 return None 1608

 tscv = TimeSeriesSplit(n_splits=splits, test_size=self.forecast_horizon) 1609

 errors = [] 1610

 for train_index, test_index in tscv.split(self.data): 1611

 if len(train_index) < self.window_size: 1612

 print(f"Warning: Train set too small for window size. Skipping split.") 1613

 continue 1614

 train, test = self.data[train_index], self.data[test_index] 1615

 original_data = self.data 1616

 self.data = train 1617

 self.similarity_cache = {} 1618

 predicted = self.predict() 1619

 if predicted.size > 0: 1620

 actual = test[:len(predicted)] 1621

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

60

 metrics = self.evaluate_prediction(actual, predicted) 1622

 errors.append(metrics) 1623

 else: 1624

 print("Insufficient data to predict for this split.") 1625

 self.data = original_data 1626

 if errors: 1627

 avg_metrics = {metric: np.mean([e[metric] for e in errors if metric in e]) for metric in errors[0]} 1628

 return avg_metrics 1629

 else: 1630

 print("No valid predictions could be made across splits.") 1631

 return None 1632

 1633

 def get_ explainabi l ity_ r esults(self , top_ k= 5): 1634

 similarities = self.find_similar_segments() 1635

 threshold = self.get_dynamic_threshold(similarities) 1636

 top_indices = np.where(similarities > threshold)[0] 1637

 if len(top_indices) == 0: 1638

 top_indices = np.argsort(similarities)[-top_k:] 1639

 results = { 1640

 'top_similar_segments': top_indices.tolist(), 1641

 'similarity_scores': similarities[top_indices].tolist(), 1642

 'threshold': threshold, 1643

 'segment_contributions': [] 1644

 } 1645

 predictions = [] 1646

 valid_indices = [] 1647

 for idx in top_indices: 1648

 start = idx + self.window_size 1649

 if start + self.forecast_horizon <= len(self.data): 1650

 predictions.append(self.data[start:start + self.forecast_horizon]) 1651

 valid_indices.append(idx) 1652

 if not predictions: 1653

 return results 1654

 predictions = np.array(predictions) 1655

 weights = similarities[valid_indices] 1656

 weighted_predictions = predictions * weights[:, np.newaxis] 1657

 for i, (index, score, prediction, contribution) in enumerate(zip(valid_indices, similarities[valid_indices], 1658

predictions, weighted_predictions)): 1659

 results['segment_contributions'].append({ 1660

 'segment_index': int(index), 1661

 'similarity_score': float(score), 1662

 'prediction': prediction.tolist(), 1663

 'weighted_contribution': contribution.tolist(), 1664

 'contribution_percentage': (contribution / np.sum(weighted_predictions, axis=0) * 100).tolist() 1665

 }) 1666

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

61

 return results 1667

 1668

 def plot_ near est_ neighbor s(self , k= 5): 1669

 current_segment = self.extract_segments(self.window_size)[-1] 1670

 neighbors = self.get_nearest_neighbors(k) 1671

 plt.figure(figsize=(15, 10)) 1672

 plt.subplot(k+1, 1, 1) 1673

 plt.plot(current_segment, color='blue', label='Current Segment') 1674

 plt.title('Current Segment') 1675

 plt.legend() 1676

 for i, (idx, similarity) in enumerate(neighbors, start=2): 1677

 neighbor_segment = self.extract_segments(self.window_size)[idx] 1678

 plt.subplot(k+1, 1, i) 1679

 plt.plot(neighbor_segment, color='red', label=f'Neighbor {i-1}') 1680

 plt.title(f'Neighbor {i-1} (Similarity: {similarity:.4f})') 1681

 plt.legend() 1682

 plt.tight_layout() 1683

 plt.show() 1684

 1685

 def analyze_ and_ plot_ neighbor s(self , k= 5): 1686

 current_segment = self.extract_segments(self.window_size)[-1] 1687

 neighbors = self.get_nearest_neighbors(k) 1688

 plt.figure(figsize=(20, 5*k)) 1689

 plt.subplot(k+1, 2, 1) 1690

 plt.plot(current_segment, color='blue', label='Current Segment') 1691

 plt.title('Current Segment') 1692

 plt.legend() 1693

 for i, (idx, overall_similarity) in enumerate(neighbors, start=1): 1694

 neighbor_segment = self.extract_segments(self.window_size)[idx] 1695

 analysis = self.analyze_segment_similarity(idx) 1696

 plt.subplot(k+1, 2, 2*i+1) 1697

 plt.plot(neighbor_segment, color='red', label=f'Neighbor {i}') 1698

 plt.title(f'Neighbor {i} (Overall Similarity: {overall_similarity:.4f})') 1699

 plt.legend() 1700

 plt.subplot(k+1, 2, 2*i+2) 1701

 methods = list(analysis['similarity_scores'].keys()) 1702

 scores = list(analysis['similarity_scores'].values()) 1703

 plt.bar(methods, scores) 1704

 plt.title(f'Similarity Scores for Neighbor {i}') 1705

 plt.ylim(0, 1) 1706

 print(f"\nNeighbor {i} Analysis:") 1707

 print(f"Overall Similarity: {overall_similarity:.4f}") 1708

 print("Similarity Scores:") 1709

 for method, score in analysis['similarity_scores'].items(): 1710

 print(f" {method}: {score:.4f}") 1711

This is a preprint draft. The published article can be found at: https://doi.org/10.1016/j.cie.2024.110812.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors

exploration for time series and forecasting problems. Computers & Industrial

Engineering. https://doi.org/10.1016/j.cie.2024.110812.

62

 print("Top Contributing Features:", analysis['top_contributing_features']) 1712

 plt.tight_layout() 1713

 plt.show() 1714

 1715

