Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

SPINEX-TimeSeries: Similarity-based Predictions with Explainable Neighbors Exploration for Time Series and Forecasting Problems

Ahmed Z. Naser¹, M.Z. Naser^{2,3}

 ¹Department of Mechanical Engineering, University of Manitoba, Canada, E-mail: <u>a.naser@umanitoba.ca</u>
 ²School of Civil & Environmental Engineering and Earth Sciences (SCEEES), Clemson University, USA
 ³Artificial Intelligence Research Institute for Science and Engineering (AIRISE), Clemson University, USA E-mail: <u>mznaser@clemson.edu</u>, Website: <u>www.mznaser.com</u>

8 Abstract

1

2 3

4 5

6

7

9 This paper introduces a new addition to the SPINEX (Similarity-based Predictions with Explainable

10 Neighbors Exploration) family, tailored specifically for time series and forecasting analysis. This

new algorithm leverages the concept of similarity and higher-order temporal interactions across

- 12 multiple time scales to enhance predictive accuracy and interpretability in forecasting. To evaluate
- 13 the effectiveness of SPINEX, we present comprehensive benchmarking experiments comparing it
- against 18 algorithms and across 49 synthetic and real datasets characterized by varying trends,
- 15 seasonality, and noise levels. Our performance assessment focused on forecasting accuracy and
- 16 computational efficiency. Our findings reveal that SPINEX consistently ranks among the top 5
- performers in forecasting precision and has a superior ability to handle complex temporal dynamics compared to commonly adopted algorithms. Moreover, the algorithm's explainability
- features, Pareto efficiency, and medium complexity (on the order of O(log n)) are demonstrated
- through detailed visualizations to enhance the prediction and decision-making process. We note
- that integrating similarity-based concepts opens new avenues for research in predictive analytics.
- 22 promising more accurate and transparent decision making.

23 <u>Keywords</u>: Algorithm; Machine learning; Benchmarking; Time series; Forecasting.

24 **1.0 Introduction**

Time series analysis involves the study of data collected or recorded sequentially over time to extract meaningful patterns, trends, and insights [1]. Such a temporal ordering of data distinguishes time series from cross-sectional data and necessitates specialized techniques to understand the underlying mechanisms that generate the observed data and to forecast future values based on

historical patterns. In other words, time series analysis inherently focuses on temporal data, with

30 applications aiming to understand past behaviors, predict future trends, and identify cyclical

- 31 patterns as well as anomalies. Such applications can span diverse domains, from financial
- forecasting to environmental modeling, etc. [2].
- 33 Given that a core component of time series analysis builds on forecasting future predictions from
- past trends/responses, the concept of similarity in time series then arises [3]. Similarity in this
- context refers to the degree of resemblance or correspondence between different segments of a
- single time series or between multiple time series [4]. The quantification of similarity enables
- researchers and practitioners to identify recurring patterns, classify time series into groups with similar characteristics, and detect deviations from expected behavior. In a way, similarity may

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

³⁹ enable the establishment of a notion of "normal" behavior, which can then help identify instances

40 that exhibit low similarity to these reference patterns (i.e., anomalies). Thus, the notion of

similarity can be particularly significant in pattern recognition, anomaly detection, and clustering
 [5].

In parallel, this concept is not only about finding sequences that look alike but also aims to 43 understand temporal alignment and variation between data points. For example, two economic 44 time series might exhibit similar patterns of growth and recession cycles but shift in time or at 45 different scales. Accurately measuring such similarities involves techniques that consider 46 alignment and scaling of time data instead of standard distance metrics [6]. This can be apparent 47 in the case of traditional metrics like Euclidean and Manhattan distances, as these quantify 48 similarity by measuring the distances between points in a time series. However, these measures 49 often fall short of capturing the dynamic characteristics of time series data, such as trends and 50 seasonality [7]. The same measures also tend to be sensitive to small fluctuations, which can be 51 misleading in a temporal context where trends and cycles play a significant role [8]. 52

As one can see, unlike static data, where similarity can often be measured using straightforward 53 distance metrics, time series data presents additional complexities stemming from the observations' 54 temporal nature. Consequently, specialized similarity measures have been developed to address 55 these challenges, each with its own strengths and limitations. For instance, Dynamic Time 56 Warping (DTW) allows elastic transformations of the time [9]. DTW also allows for non-linear 57 alignment of time series and hence can accommodate differences in speed and duration of patterns. 58 Thus, DTW can align two sequences in a way that minimizes their overall distance. This method 59 is particularly effective in dealing with time series that are similar in shape but vary in speed or 60 timing of events where temporal alignment is fundamental, such as speech recognition and 61 bioinformatics [10,11]. 62

Another similarity-based concept is the Longest Common Subsequence (LCSS), which measures 63 the similarity between two sequences by identifying the longest subsequence present in both 64 sequences without altering the order of elements [12]. LCSS can be robust to noise and occlusions 65 and is particularly useful in real-time series applications where missing values may occur. Another 66 approach to quantifying similarity in time series is through the use of feature-based methods and 67 correlation measures. The former methods involve extracting relevant features or summary 68 statistics from the time series and comparing these derived representations rather than the raw data 69 points, including statistical moments, frequency domain characteristics, and model parameters. 70 The latter measures, such as Pearson's or Spearman's correlation coefficients etc., capture the 71 degree of relationship/association between time series. Both techniques have proven useful yet 72 may fail to capture non-linear relationships and are sensitive to outliers and phase differences 73 [13,14]. 74

More recently, machine learning (ML) advancements have introduced new models for assessing similarity in time series data. Techniques such as Siamese and triplet networks learn similarity

Please cite this paper as: Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

metrics directly from data, potentially capturing complex, non-linear relationships that traditional approaches might miss [15]. Furthermore, methods like K-Nearest Neighbors (KNN) for time series rely on identifying similar historical patterns to make predictions about future values. More sophisticated approaches, such as Long Short-Term Memory (LSTM) networks, can now implicitly learn to recognize and utilize similar patterns in their internal representations [16]. A key component that remains opaque in ML-based methods is their blackbox nature and limited interpretability [17].

- It can then be inferred that the concept of similarity, as well as explainability, can be thought of as elemental to forecasting tasks. Thus, this paper presents the development of the time series variant to the SPINEX (Similarity-based Predictions with Explainable Neighbors Exploration) family. This variant builds upon the concept of similarity and explainability between similarly-identify neighbors and segments. As such, SPINEX hopes to bridge some of the existing challenges. In this study, we examine the algorithm's ability to perform on 49 diverse datasets compared to 18
- 90 commonly used algorithms.

91 **2.0 Description of the SPINEX for time series and forecasting**

92 2.1 General description

SPINEX represents a unique approach to time series analysis and prediction. This algorithm 93 integrates multiple techniques to deliver robust, adaptive, and interpretable time series forecasting. 94 For example, at its core, SPINEX employs a multi-method similarity analysis, utilizing various 95 measures such as cosine similarity, Euclidean distance, DTW, Pearson, and Spearman correlation. 96 This ensemble approach enables a comprehensive assessment of segment similarities, capturing 97 diverse aspects of time series behavior. A key feature of SPINEX is its adaptive window sizing 98 mechanism, which adjusts based on data length, variability, and potential seasonality. This 99 adaptability allows the algorithm to handle time series of varying lengths and characteristics 100 effectively. Additionally, SPINEX implements time series cross-validation to provide robust 101 performance estimates and assess model stability across different time periods. 102

SPINEX's multi-level analysis capability provides a hierarchical view of time series patterns to 103 enable robustness to different scales of temporal dependencies. Furthermore, SPINEX incorporates 104 a dynamic thresholding technique for anomaly detection and forecasting validation. This method 105 adjusts the similarity threshold based on the recent performance of the predictions and the 106 distribution of similarity scores, which further enhances the algorithm's flexibility and 107 responsiveness to changing patterns in the data. The same can be crucial for understanding outliers 108 and potential regime changes in the data. Thus, SPINEX effectively identifies the most relevant 109 segments for making predictions to improve the reliability of the forecast. In cases where 110 accessible similarity-based prediction is not feasible, the algorithm switches to a fallback 111 prediction method, which includes trend extraction, multiple seasonality detection, non-linear 112 trend modeling, and anomaly-aware residual prediction with confidence intervals. 113

Please cite this paper as: Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

As mentioned above, SPINEX focuses on explainability by offering detailed results on the most similar historical segments, their contributions to the prediction, and visualizations of the nearest neighboring similar segments. This enhances understanding of the prediction process and the underlying patterns in the data. Computational efficiency within SPINEX is achieved through the use of techniques like numba for just-in-time compilation and caching mechanisms. For completion, a representative pseudo-code is provided below.

120	Input:
121	data: Time series data
122	window_size (optional): Length of each segment
123	forecast_horizon: Number of future steps to predict
124	similarity_methods: List of similarity methods (e.g., 'cosine', 'euclidean', 'dtw', etc.)
125	dynamic_window: Flag to enable adaptive window sizing
126	multi_level: Flag to enable multi-level similarity analysis
127	dynamic_threshold: Flag to enable dynamic threshold adjustments
128	Output:
129	Predicted future values of the time series
130	Identified anomalies (if applicable)
131	Explainability insights for predictions
132	Procedure:
133	1. Initialization:
134	- Convert `data` to a numpy array.
135	- Set `window_size` to default or provided value.
136	- Set default similarity methods and initialize caches.
137	2. Dynamic Parameter Adjustment (if `dynamic_window` or `dynamic_threshold` is enabled):
138	- Calculate volatility or variability in recent data.
139	- Adjust `window_size` based on variability and predefined bounds.
140	- Calculate dynamic threshold for similarity scores based on recent errors and scores.
141	3. Segment Extraction:
142	- Slide a window of size `window_size` across the data to extract overlapping segments.
143	- Normalize each segment (mean = 0, std = 1).
144	4. Similarity Matrix Calculation:
145	- For each specified similarity method:
146	- Compute pairwise similarity scores between segments using:
147	- Cosine similarity
148	- Euclidean similarity
149	- DTW (Dynamic Time Warping)
150	- Other specified methods
151	- Cache results for reuse.
152	5. Find Similar Segments:
153	- Evaluate similarity scores for segments using all methods.
154	- Combine results across methods to compute an overall similarity score.
155	6. Prediction:
156	- Identify top similar segments based on overall similarity score.
157	- Use weights derived from similarity scores to combine predictions.
158	- IT no valid predictions are possible, use a fallback method (e.g., seasonal decomposition or trend modeling).
159	//. Anomaly Detection (Optional):

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

- 160 - Define a threshold for similarity scores (dynamic or static). - Identify segments with scores below the threshold as anomalies. 161 8. Explainability Analysis (Optional): 162 - Analyze contributions of features to similarity scores. 163 164 - Identify top-contributing features for each similar segment. - Compute weighted contributions of segments to predictions. 165 9. Evaluation: 166 - Evaluate prediction accuracy using metrics such as MSE, RMSE, MAE, R², etc. 167 - Validate predictions across multiple train-test splits if required. 168 169 10. Visualization (Optional): - Plot predictions alongside actual time series data. 170 - Highlight anomalies or visualize top similar segments and their contributions. 171 172 End Algorithm 2.2 Detailed description 173 A more detailed description of SPINEX's methods and functions is provided herein. It is worth 174 noting that the presented default settings were arrived at from an empirical analysis of the 49 175 datasets examined in this paper (obtained from synthetic and real datasets). 176 Initialization (init) 177 The init method initializes and sets up the operational parameters of SPINEX. The method 178 signature is as follows: 179 def __init__(self, data, window_size=None, forecast_horizon=1, similarity_methods=None, 180 dynamic window=True, multi level=True, dynamic threshold=True): 181 More specifically: 182 data: The input time series data, converted into a NumPy array for efficient numerical operations. 183 • 184 window size: Determines the length of the segments to be compared. If not specified, it is set to the greater of 10 or one-tenth of the data length. This parameter can be dynamically adjusted based on the data's 185 volatility. 186 forecast horizon: Specifies how far into the future predictions are made. By default, it is the smaller of the • 187 provided value and one-tenth of the data length. 188 similarity methods: A list of methods used to compute similarity between segments. Defaults to ['cosine', 189 • 'euclidean', 'dtw'] if not specified. 190 dynamic window: Enables or disables dynamic adjustment of the window size based on data characteristics. 191 multi level: Allows the use of multiple window sizes in the analysis to capture different scales of patterns. 192 • • dynamic threshold: Enables adaptive thresholding in the similarity calculations to improve forecast 193 reliability. 194 Additionally, the class uses caching mechanisms (similarity cache and segments cache) to store computed 195 196 results for re-use to optimize performance for large datasets. Method: Similarity Measures 197
- 197 Method: Similarity Measures

198	This method	offers several	methods to	compute the	similarity	between t	ime series	segments:
				1	J			0

• Cosine Similarity:

Please cite this paper as:

200 201 202		• Computes the cosine of the angle between two vectors and is defined as the dot product of the vectors divided by the product of their norms. This measure is effective in identifying the similarity in direction regardless of magnitude.
203		• Equation: $similarity = \frac{X \cdot X^{T}}{\ Y\ \ Y^{T}\ }$
204	Correla	ation Similarity:
205 206 207		 Calculates the Pearson correlation coefficient matrix of the rows of X, providing a measure of linear relationships between segments. Equation: similarity = correct(X)
207	• Euclida	• Equation: $similarity = correcter(x)$
208 209 210	• Euchae	 Uses the Euclidean distance to compute similarity by applying a transformation that inversely relates distance to similarity.
211		• Equation: $similarity = \frac{1}{\sqrt{1-1}}$
212	• Spearm	$1+\sqrt{cdist(X,X,Euclidean)^2}$
212 213 214 215	, spearn	 Calculates the Spearman rank correlation between the columns of X, useful for capturing monotonic relationships between segments that may not necessarily be linear. Equation: <i>similarity</i> = spearmanr(X^T)[0]
216	• Dynam	ic Time Warping (DTW) Similarity:
217 218 219 220		• Measures similarity based on the minimal distance that aligns two time series, accounting for shifts and distortions in time. In essence, DTW measures the similarity between two temporal sequences, which may not be of the same length, by aligning their points to minimize the overall distance between them
220		For Equation: $similarity = \frac{1}{1}$
222		• $DTW(x,y) = \min(\cot t + \min(\operatorname{dtw}_{matrix}[i-1,j],\operatorname{dtw}_{matrix}[i,j-1])$
224	• Directi	on Similarity:
225		• Calculates the direction similarity via the direction method to be discussed later on.
226 227 228	Method: adj This method a time series and	ust_dynamic_parameters adjusts the window size and similarity threshold based on the recent behavior of the d the algorithm's performance.
229	 Volatili 	ty-based Window Size Adjustment:
230 231 232		• Volatility Calculation: First, this method calculates the volatility of the most recent portion of the data, defined as the standard deviation over the last data segments. The size of this segment is a maximum of 10 or one-tenth of the data length but not exceeding half the length
233		of the data.
234 235		 Window Size Recalculation: The window size is inversely adjusted based on the calculated velocities to respond to the date's fluctuating nature. If the velocities have a larger window size
235 236		is used to smooth out noise and canture more extended natterns. If the volatility is high the
237		window size decreases, making the model more responsive to recent changes. A scaling factor
238		controls this adjustment, clipped between 0.1 and 1.0 to prevent extreme values.
239		• Equation:window_size =
240		max (MIN_WINDOW_SIZE, min (<u>MAX_WINDOW_SIZE</u> , MAX_WINDOW_SIZE))
241		 where scale_factor=clip(volatility,0.1,1.0).
242	• Thresh	old Adjustment:

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

243		• Error-based Adjustment: If recent prediction errors are available, the threshold is adjusted
244		based on these errors' mean and standard deviation to accommodate the model's predictive
245		accuracy.
246		• Similarity Score-based Adjustment: If recent similarity scores are tracked, the threshold is
247		further adjusted to reflect the mean and variability in these scores. This dynamic threshold
248		helps maintain the similarity measure's relevance under varying data conditions.
249		• Equation: threshold = mean_sim + std_sim + threshold_adjustment
250	Method: get	_dynamic_threshold
251	This method c	omputes an adaptive threshold for the similarity scores to decide which time series
252	segments are o	considered similar enough to be relevant for predictions.
253	Basic 1	hreshold Calculation: Calculates a baseline threshold as the sum of the mean and standard deviation
254	of the	similarity scores. This method aims to keep only the most similar segments, thus ensuring that the
255	predict	ions are based on the most relevant and recent data patterns.
256	 Thresh 	old Adjustment: If fewer than five segments exceed this baseline threshold, indicating a potential
257	over-ti	shtening, the threshold is reduced to the 90th percentile of the scores to include more segments.
258		• Equation: adjusted threshold =
259		$\{percentile(similarities, 90) if abs{s > base_threshold} < 5$
		base_threshold, otherwise
260		

261 Method: adjusted_dtw_similarity

0

This method modifies the DTW similarity measure to be more forgiving by squaring the DTW distance before inversely transforming it into a similarity score. This adjustment makes the similarity measure less sensitive to small variations, emphasizing more significant patterns in the similarity assessment.

266

274

275

Equation: *adjusted_scores* = $\frac{1}{1 + \sqrt{dtw \ scores}}$

267 Method: plot_prediction

This method is designed to visualize the forecasting performance of the SPINEX model by plotting actual data alongside predicted values. This method serves as a tool for assessing the accuracy and relevance of the model's predictions.

271 Method: extract_segments

This method prepares segments of the time series data for further analysis, such as computing similarities or making predictions such that:

- **Dynamic Window Size:** If no specific window size is provided, the method calculates an adaptive window size using the adaptive_window_size() method.
- Adjustment for Small Data: If the total data length is less than the determined window size, the window size is adjusted to half the data length to ensure at least some segmentation can be performed.
- Segmentation: Using np.lib.stride_tricks.sliding_window_view, the method creates overlapping segments
 of the specified window size from the time series data. This function efficiently generates a new view into
 the data array without copying the data.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time and forecasting problems. Computers æ Industrial series Engineering. https://doi.org/10.1016/j.cie.2024.110812.

- 281 Normalization: Each segment is normalized by subtracting its mean and dividing by its standard deviation. This step standardizes the segments, mitigating the effect of different scales or baselines in the data and 282 improving the comparability between segments. 283 segments-segment_means 284 0
- 285

286

- Equation: *normalized_segments* = segment_stds+1e-8
- Here, 1e-8 is added to the standard deviations to prevent division by zero in the case of very 0 uniform segments.

Method: find similar segments 287

This method facilitates the identification of similar segments within the time series data, which is 288 crucial for making accurate predictions. 289

- Multi-Level Analysis: Depending on the multi level attribute, the method considers multiple window sizes 290 291 for segmentation. These sizes include a smaller window (half the primary size), the primary window size 292 itself, and a larger window (double the primary size or one-fourth the length of the data, whichever is smaller). This multi-scale approach allows the model to capture similarities at different granularities. 293
- 294 Segment Extraction and Hashing: For each window size, the method extracts segments and computes a hash to uniquely identify them. This hash is used to cache the segments and avoid redundant calculations. 295
- 296 Similarity Calculation: For each window size, the method computes similarity matrices using the specified methods (cosine, euclidean, dtw, etc.). If a large number of segments are detected (more than 500), DTW 297 is skipped to avoid performance bottlenecks. 298
- 299 Aggregation of Similarities: The method averages the similarities across different methods to get a composite similarity measure for each window size. These are then averaged across all window sizes to 300 get the final measure of similarity between segments. 301
- Fallback Method: If no valid similarities are found (e.g., due to insufficient segments or errors in 302 calculation), a fallback method based on autocorrelation is used. 303

Method: fallback similarity method 304

This method provides a basic mechanism to calculate similarity based on autocorrelation when 305 other methods fail or are not applicable due to data constraints. 306

Method: analyze segment similarity 307

This method quantitatively assesses how similar a particular segment (indexed) is to the most 308 recent segment in the time series. 309

- Segment Extraction: Both the target segment and a reference segment (usually the most recent one) are 310 • 311 extracted.
- 312 Similarity Calculation: The method calculates similarity scores using all available similarity methods, providing a detailed breakdown of how each method perceives the similarity. 313
- Feature Contributions: It calculates the absolute differences between the corresponding features of the 314 two segments to determine which features contribute most to any dissimilarity. 315

Method: get nearest neighbors 316

This method identifies the nearest neighbors of the most recent segment based on the computed 317

similarities and can identify tasks for anomaly detection. After calculating similarities for all 318

segments, it sorts these and picks the top k segments most similar to the latest segment, providing 319

their indices and similarity scores. 320

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

321 Method: detect_seasonality

- 322 This method is designed to identify seasonality within the time series data, which is crucial for
- ³²³ understanding periodic patterns that could influence forecasting and other analytical tasks.
- Autocorrelation Calculation: The method calculates the autocorrelation (ACF) for the data up to a specified lag (max_lag). If max_lag is not specified, it defaults to half the length of the data.
- **Peak Detection:** The method then identifies ACF peaks, representing potential seasonal periods. Peaks are detected where the autocorrelation at a given lag is greater than its neighbors, indicating a repeating pattern.
- Seasonality Inference: If any peaks are detected, the first peak is assumed to represent the primary seasonal period, and its lag is returned. An empty list is returned if no peaks are detected, indicating no detectable seasonality.

331 Method: detect_anomalies

This method identifies anomalies in the time series data by comparing the similarity of data segments to a dynamically determined threshold.

- Segment Extraction and Similarity Calculation: Segments of the data are extracted, and their similarities are computed.
- **Threshold Determination:** A threshold is set at a specified percentile (default is the 2nd percentile) of the similarity scores, identifying the least similar segments as potential anomalies.
 - Anomaly Identification: Segments whose similarity scores fall below the threshold are marked as anomalies.
 - Equation: *Threshold* = *percentile*(*similarities*, *threshold_percentile*)

340 Method: fallback_prediction

338

339

343 344

347

350 351

361

This method provides a comprehensive mechanism for generating predictions when standard approaches are not feasible, utilizing multiple time series decomposition and modeling techniques.

- **Pre-checks:** It first ensures that there is sufficient data for prediction based on the specified number of points required.
- Adaptive Window Sizing: This step dynamically adjusts the window size for trend extraction based on minimizing the mean squared error (MSE) of the trend-subtracted data.
 - **Trend Extraction:** Utilizes a moving average to smooth the data and extract the underlying trend.
- Seasonality Detection: Employs autocorrelation to identify potential seasonality periods and extract these
 seasonal components.
 - **Residual Calculation:** The residuals (or unexplained components) are analyzed after removing the trend and seasonal components.
- Anomaly Detection and Handling: Anomalies in the residuals are identified and replaced with median values to stabilize the model.
- Non-linear Trend Modeling: Fits a polynomial model to predict the future trend based on past data.
- Seasonal Component Prediction: Projects the identified seasonal patterns into the future.
- Residual Prediction: Uses a weighted average approach to predict future residuals, incorporating confidence
 intervals to account for uncertainty.
- Combination of Components: The final prediction combines the trend, seasonal, and residual predictions to
 form a complete forecast.
- **Trend:** Extracted using a moving average filtered by convolution:
 - Equation: *trend* = *convolve* (*data*, *window*)/*window_size*
- **Seasonality:** Identified through peak detection in the autocorrelation function.
- **Residuals:** Calculated as data trend

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. https://doi.org/10.1016/j.cie.2024.110812.

Confidence Intervals for Residuals: Generated by assuming the residuals follow a normal distribution modulated by an exponential decay in influence.

366 Method: tune_hyperparameters

This method optimizes the hyperparameters of the model, specifically focusing on the detection of

368 seasonalities.

369

370

371

372

373

379

380

383

384

- **Iterative Testing**: The method iterates over a range of possible numbers of seasonalities to detect (from 1 to 4).
- **Prediction Generation**: For each candidate setting, it generates predictions using the fallback_prediction method.
- **Evaluation**: Calculates the MSE for each set of predictions compared to the actual data.
- Selection of Optimal Parameter: Identifies the number of seasonalities that result in the lowest MSE, suggesting the best fit for the data.

376 Method: predict

- This method combines various techniques to generate accurate forecasts based on the similarity of time series segments.
 - **Dynamic Parameter Adjustment**: Initially, dynamic parameters such as window size and thresholds are adjusted based on recent data characteristics.
- Similarity Assessment: It calculates similarities between segments of the time series to identify patterns that
 can be used for forecasting.
 - **Fallback Prediction**: If no significant similarities are found, it resorts to a fallback prediction method that uses more basic statistical methods.
- Threshold Determination: Determines a dynamic threshold for considering a segment significantly similar to
 the latest data, adjusting the threshold based on the distribution of similarity scores.
- Valid Predictions Identification: Identifies segments that meet the similarity threshold and ensures that they
 are within a valid range for making predictions.
- Prediction Compilation: Compiles predictions from multiple segments, weighted by their similarity scores, and adjusts them to align with the most recent actual data point.
- **Error Handling**: If any step fails, it defaults to the fallback prediction method.

392 Method: update_recent_performance

This method updates the performance metrics of the model by recording the recent error and similarity scores, which are essential for monitoring and improving the model's accuracy over time.

- Dynamic Parameter Adjustment: Initially, dynamic parameters such as window size and thresholds are adjusted based on recent data characteristics.
- Similarity Assessment: It calculates similarities between segments of the time series to identify patterns that
 can be used for forecasting.

400 Method: validate_prediction

This method evaluates the robustness of the model's predictions by using cross-validation, specifically time-series cross-validation, where the order of data points is preserved.

403 • Setup: Determines the number of splits for cross-validation based on available data, ensuring there are
 404 enough points for each training and testing set.

Please cite this paper as:

405	Cross-Validation:
406	• Single Split Handling: If there is insufficient data for multiple splits, perform a single train-test split.
407	o Multiple Splits: Uses TimeSeriesSplit from scikit-learn to create training and testing segments. It
408	ensures that predictions are based only on past data, respecting the temporal order.
409	• Prediction and Evaluation: For each split, the model predicts future values based on the training set,
410	and the predictions are evaluated using the evaluate_prediction method.
411	• Aggregation of Results: The results from each split are aggregated to calculate average performance
412	metrics across all splits.
413	Method: get_explainability_results
414	This method provides insights into why certain predictions were made based on the similarity of
415	time series segments.
416	Similarity Assessment: The method first identifies similar segments by calculating and evaluating segment
417	similarities.
418	• Threshold Determination: It dynamically determines a similarity threshold above which segments are
419	considered significantly similar.
420	• Top Segments Identification: Segments surpassing the threshold are marked as key influencers. If no
421	segments exceed the threshold, the top k segments based on similarity scores are selected.
422	• Contribution Calculation: Each top segment calculates how much each segment contributes to the
423	predictions, using weighted averages based on their similarity scores.
425 426 427 428 429 430 431 432 433 434 435 436	 This provides a deeper analysis of how and why certain segments are considered similar to the current segment, offering both visual and numerical insights. Current and Neighbor Segment Extraction: Similar to plot_nearest_neighbors, but with added analysis of segment similarities. Similarity Analysis: For each neighbor, it computes detailed similarity scores using various metrics. Visualization and Reporting: Each neighbor's segment and its similarity scores are plotted and displayed. This includes a breakdown of the scores for different similarity metrics and the identification of key features contributing to the similarities. Similarity Scores: Each neighbor's similarity to the current segment is quantified using methods like cosine, euclidean, and DTW similarities. Feature Contributions: Differences between segments are analyzed to pinpoint which specific elements (data points) contribute most to the observed similarities or discrepancies.
437	Additional functions for optimized clustering:
438	Method: direction_accuracy
439	This method calculates the direction accuracy to compare the directional trends between two time
440	series segments. Given two segments, segment1 and segment2, the following steps compute the
4.4.4	direction accuracy
441	direction accuracy:
442	• Calculate the Differences: compute the first-order differences of both segments such that:
443	• Equation: $Diff I_i = segment I_{i+1} - segment I_i$ (with a similar approach for segment 2)
444	 Determine the Direction : Using the sign function sign(·), the direction of these differences can be calculated.
445	• Equation: $airection I_i = sign(Diff I_i)$ (with a similar approach for segment 2)

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

446
 Compare Directions: Compare the directional trends of the two segments by checking if the directions are equal at each time step

448

• Equation: match = $\begin{cases} 1 \text{ if direction } 1_i = \text{direction } 2_i \\ 0 \text{ otherwise} \end{cases}$

449 Method: Entropy

The numba_sample_entropy method calculates the sample entropy of a sequence x, which is a measure of the complexity or the amount of regularity and unpredictability in time series data. This entropy is useful for determining the complexity of physiological time series signals.

453

Mathematical Representation: $\circ \quad Sample \ entropy = -\log \frac{A+1e-10}{B+1e-10}$

454 455

456 **Method: Hash Array (hash_array)**

This static method generates a unique hash for a numpy array using MD5 to create keys for caching

458 purposes, allowing efficient retrieval of previously computed results.

459 Method: plot_anomalies

460 This method visualizes the anomalies detected.

461 Method: plot_nearest_neighbors

462 This method visualizes the time series segments that are most similar to the most recent segment,

463 facilitating an understanding of the model's decision-making process.

464 **3.0 Description of benchmarking algorithms**

We examined SPINEX against 18 commonly used time series forecasting algorithms, namely, ARIMA, SARIMA, ETS, Holt-Winters, Prophet, Theta, Simple Moving Average, VAR, Croston's

467 Method, LSTM, Neural Networks, Gaussian Process Regression, KNN, SVR, Random Forest,

468 XGBoost, Gradient Boosting, CatBoost, and Bagging. As one can see, the first nine algorithms are

specifically designed for time series analysis, while the latter group consists of other ML algorithms that can be adapted for time series forecasting with appropriate feature engineering, as

algorithms that can be adapted for time series forecasting with appropriate feature engineering, as
 seen in [8,18–20]. Each of these algorithms is described in this section, where we showcase a brief

seen in [8,18–20]. Each of these algorithms is described in this section, where we showcase a brief historical background and algorithmic logic (with additional details being available in the cited

original sources). Table 1 compares these algorithms with respect to their time series forecasting

- 474 characteristics.
- 475 *3.1 Algorithms specifically designed for time series analysis*
- 476 <u>3.1.1 Autoregressive Integrated Moving Average (ARIMA and SARIMA)</u>
- 477 ARIMA (Autoregressive Integrated Moving Average) and its seasonal variant SARIMA were
- ⁴⁷⁸ popularized by Box and Jenkins in the 1970s [21] however, the concepts of Auto-Regressive and
- 479 Moving Average models were introduced by Yule in 1926 and by Slutsky in 1937, respectively
- 480 [22]. The ARIMA algorithm combines these concepts and components with differencing to handle
- 481 non-stationary data. The ARIMA algorithm is particularly effective for univariate time series

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

forecasting, while SARIMA extends this capability to series with seasonal patterns. The models are specified by three main parameters: p (order of the Auto-Regressive term), d (degree of differencing), and q (order of the Moving Average term), and SARIMA adds additional seasonal parameters. These algorithms are widely used due to their flexibility and ability to capture complex temporal dependencies. However, the algorithms assume linear relationships and, hence, may struggle with highly nonlinear patterns. Moreover, the selection of appropriate internal parameters can be challenging and often requires expert/domain knowledge or automated procedures [23].

489 <u>3.1.2 Croston's Method</u>

Croston introduced this method in 1972 [24] as a specialized forecasting algorithm designed for 490 intermittent demand patterns. This algorithm separates the time series into two components: the 491 non-zero demand sizes and the intervals between non-zero demands. Each component is then 492 forecasted separately using simple exponential smoothing, and the final forecast is obtained by 493 dividing the demand size forecast by the interval forecast. This method is particularly useful in 494 domains where demand occurs sporadically (such as that commonly seen in inventory 495 management and spare parts forecasting) [25]. Croston's method assumes that the demand sizes 496 and intervals are independent (which often introduces bias as this assumption may not always hold 497 true). Several modifications of Croston's method have been proposed to address this main 498 limitation [26,27]. 499

500 <u>3.1.3 Error, Trend, Seasonality (ETS), and the Holt-Winters Method</u>

ETS (Error, Trend, Seasonality) and Holt-Winters methods are exponential smoothing techniques 501 that have evolved since their introduction by Brown and Holt in the 1950s [28,29]. These two 502 methods decompose time series into components (level, trend, and seasonality) and use weighted 503 averages of past observations to forecast future values. ETS provides a framework for selecting 504 the most appropriate model based on the nature of the components (i.e., additive or multiplicative). 505 Holt-Winters [30] is a specific implementation within the ETS family that has been modified to 506 account for time series with both trend and seasonal components. This family of algorithms can 507 be effective in handling a wide range of time series patterns. However, these algorithms may 508 struggle with complex, non-linear relationships and can be sensitive to outliers [31]. 509

510 <u>3.1.4 Long Short-Term Memory (LSTM)</u>

The Long Short-Term Memory (LSTM) network was introduced by Hochreiter and Schmidhuber 511 in 1997 [32] as a type of recurrent neural network. This network is designed to capture long-term 512 dependencies in sequential data. LSTMs use a series of gates (input, forget, and output gates) to 513 control the flow of information through the network, allowing them to selectively remember or 514 forget information over long sequences. This architecture makes LSTMs particularly well-suited 515 for time series forecasting, especially when dealing with complex, non-linear patterns and long-516 term dependencies. LSTMs can handle multivariate time series and can learn from historical data. 517 However, they often require substantial training data to perform well, can be computationally 518 intensive, and may be prone to overfitting if not properly regularized. Moreover, LSTM is a 519 blackbox algorithm and can be challenging to interpret [33]. 520

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

521 <u>3.1.5 Prophet</u>

Prophet, developed by Meta (Facebook formally) in 2017 [34]. This algorithm offers a procedure 522 for forecasting time series data based on an additive model that decomposes the time series into 523 trend, seasonality, and holiday components. Prophet is designed to handle daily observations with 524 at least one year of historical data and can accommodate missing values and outliers. The algorithm 525 automatically detects changepoints in the trend and allows for user-specified changepoints. A key 526 advantage of this algorithm is its ability to handle multiple seasonalities and incorporate domain 527 knowledge through easily interpretable parameters. Prophet is particularly effective for forecasting 528 tasks with strong seasonal effects (as well as those with several seasons of historical data). Yet, 529 this algorithm may struggle with short-term forecasts or datasets with limited historical data. 530 Additionally, while it is designed to be robust, it may not always capture complex, non-linear 531 patterns effectively [35]. 532

552 patterns effectively [55].

533 <u>3.1.6 Simple Moving Average (SMA)</u>

The Simple Moving Average (SMA) is a basic and widely used time series forecasting method. The origin of SMA can be traced back to the early days of technical and inventory analysis [36]. This method calculates the arithmetic mean of a set of values over a specific number of time

periods and is often used to smooth out short-term fluctuations and highlight longer-term trends or cycles, and can be effective for short-term forecasting in stable time series with minimal trend or seasonality. However, SMA has several limitations. This method can produce lags behind the

- most recent data points and may miss sudden changes or turning points. SMA also gives equal weight to all observations within the moving window, which may not be ideal if more recent
- observations are believed to be more relevant. Despite such limitations, SMA remains a useful tool
- 543 for forecasting methods [37].

544 <u>3.1.7 Theta Method</u>

The Theta algorithm was proposed by Assimakopoulos and Nikolopoulos in 2000 [38]. This 545 algorithm decomposes the time series into two "theta lines." The first line represents the long-term 546 trend, and the other captures short-term behavior. These lines are then extrapolated separately and 547 combined to produce the final forecast. The Theta method is praised for its simplicity and 548 effectiveness, especially for seasonal time series. The Theta algorithm often performs well without 549 requiring extensive parameter tuning, making it accessible for practitioners. However, the method 550 assumes that the time series can be well-represented via decomposition into two lines (which may 551 not always hold true for complex, non-linear time series). Moreover, it may struggle with abrupt 552

changes or structural breaks in the data [39].

554 <u>3.1.8 Vector Autoregression (VAR)</u>

Vector Autoregression (VAR), introduced by Sims in 1980 [40], is a multivariate forecasting technique that extends the univariate autoregressive model to capture the linear interdependencies among multiple time series. In VAR, each variable is a linear function of past lags of itself and past lags of the other variables. This methodology makes VAR particularly useful for understanding the relationships between multiple related time series and generating forecasts for

Please cite this paper as: Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

these interactions. VAR models are widely used in econometrics and financial time series forecasting as they can model feedback effects and provide insights into the dynamics between variables through tools like impulse response functions [41]. However, VAR models assume linear

- ⁵⁶³ relationships between variables and can become overparameterized when dealing with many
- variables or long lag structures. This could potentially lead to poor forecasts [42].

565 *3.2 ML algorithms adapted for time series forecasting*

566 <u>3.2.1 Gaussian Process Regression (GPR)</u>

Gaussian Process Regression (GPR) is a non-parametric probabilistic approach to regression and 567 time series forecasting that is rooted in Bayesian statistics. This algorithm was formalized for ML 568 applications by Rasmussen and Williams [43]. The method models the target variable as a 569 Gaussian process, assuming that any finite collection of data points has a multivariate Gaussian 570 distribution. GPR is particularly valuable in time series forecasting for its ability to provide 571 uncertainty estimates along with predictions [44]. It can capture complex, non-linear relationships 572 in the data and handles missing values naturally [45]. The flexible method can incorporate various 573 trends and seasonal patterns by choosing kernel functions. However, GPR can be computationally 574 intensive for large datasets due to the need to invert large covariance matrices, and its performance 575 depends on the choice of kernel function, which may require domain expertise or extensive 576 selection procedures [46]. 577

578 3.2.2 Gradient Boosting and CatBoost

Gradient Boosting stems from a family of ensemble learning techniques, and CatBoost was 579 recently developed by Yandex [47]. These methods work by building a series of weak learners 580 (typically decision trees) sequentially, with each learner trying to correct the errors of its 581 predecessors. In time series contexts, gradient boosting methods can capture complex, non-linear 582 relationships and handle multiple input variables [48]. CatBoost, in particular, is designed to 583 reduce overfitting and handle categorical variables efficiently, which can be beneficial in 584 forecasting scenarios. However, gradient boosting algorithms do not inherently account for the 585 temporal ordering of data, requiring careful feature engineering to incorporate time-based 586 information. As such, they may also struggle with capturing long-term dependencies without 587 extensive lag features [49]. 588

589 <u>3.2.3 K-Nearest Neighbors (KNN)</u>

The K-Nearest Neighbors algorithm is often deployed in regression and classification tasks and can be adapted for time series forecasting [50]. The algorithm is non-parametric and can capture non-linear patterns in the data. In the context of time series forecasting, KNN finds historical periods most similar to the current state and uses their subsequent values to make predictions. KNN can be particularly effective when the time series exhibits recurring patterns or when there are strong analogies between past and future behavior. However, this algorithm's performance can degrade with high-dimensional data and long-term forecasts (especially with the lack of strong

Please cite this paper as: Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

- trends). The choice of distance metric and the number of neighbors (k) can significantly impactforecast accuracy [51].
- 599 <u>3.2.4 Neural Networks</u>

Neural networks, encompassing various architectures beyond LSTM, have become increasingly 600 popular for time series forecasting [52]. Neural networks can capture complex, non-linear 601 relationships in time series data and are capable of handling multiple input variables. The 602 flexibility of their design allows practitioners to tailor architectures to specific forecasting 603 problems. However, neural networks are blackboxes that often require large amounts of training 604 data to perform well and can be prone to overfitting if not properly regularized. Additionally, the 605 selection of appropriate network architecture and hyperparameters often requires significant 606 expertise and computational resources [53]. 607

- 608 <u>3.2.5 Random Forest, Bagging, and XGBoost</u>
- Random Forest, Bagging, and XGBoost are ensemble learning methods. Bagging, short for Bootstrap Aggregating is a method to reduce variance in predictive models by creating multiple
- subsets of the original dataset through bootstrap sampling. This method trains a separate model on
- each subset and aggregates their predictions. Random Forest, introduced by Breiman in 2001 [54],
- is a specific implementation of bagging that constructs multiple decision trees and merges their
- 614 predictions to improve accuracy and control overfitting. XGBoost, developed by Chen and
- Guestrin in 2016 [55], implements gradient boosted decision trees designed for speed and
- 616 performance. All these algorithms can handle non-linear relationships and are capable of capturing
- complex patterns in time series data when properly engineered features are provided. Additionally,
- while they can handle multiple input variables, they may struggle with capturing long-term
- dependencies without extensive lag features [56,57].
- 620 <u>3.2.6 Support Vector Regression (SVR)</u>
- 621 Support Vector Regression is an extension of Support Vector Machines (SVM) that was developed
- by Vapnik et al. in the 1990s [58]. In time series forecasting, SVR works by mapping the input 622 data into a high-dimensional feature space and finding a hyperplane that best fits the data while 623 maintaining a specified tolerance margin. SVR is capable of capturing non-linear relationships 624 through the use of kernel functions, making it suitable for complex time series patterns. It is 625 particularly effective when dealing with high-dimensional data and can handle multiple input 626 variables. SVR is less prone to overfitting compared to some other ML algorithms due to its 627 structural risk minimization principle [59]. However, the performance of SVR can be sensitive to 628 the tuning of kernels/hyperparameters and necessitates careful feature engineering to incorporate 629 time-based information [60]. 630
- Table 1 A comparison among the examined algorithms in this study

10010 1 11	tuote i ii companicon among the chammed angonamics in this stady						
Algorithm	Family	Methodology & Logic	Typical Use Cases	Strengths/Advantages	Weaknesses/Disadvantages		
ARIMA	Statistical	Linear, combines differencing with	Time series data without seasonal patterns.	Flexible, good for none/some seasonal data.	Assumes linearity and stationarity, may not be		

Please cite this paper as:

		autoregression and moving average components.			suitable for complex patterns.
SARIMA	Statistical	Extends ARIMA to include seasonal components.	Seasonal time series data.	Handles seasonality, well-understood.	Computationally intensive, linear assumptions can be overfitted with short time series.
ETS	Statistical	Exponential smoothing (decomposing) techniques with error, trend, and seasonal components.	Short-term forecasting, seasonal and non-seasonal data.	Easy to implement, good for data with trends and seasonality.	May overfit on noisy data and can struggle with abrupt changes.
Holt- Winters	Statistical	Triple exponential smoothing for data with trends and seasonality.	Seasonal time series data.	Simple to implement, effective for additive and multiplicative seasonal patterns.	Assumes additive effects, may not handle high- frequency data well and can struggles with irregular time series
Prophet	Statistical	Additive and decomposable model with trend, seasonality, and holidays.	Daily data with strong multiple seasonality patterns, missing data, and outliers.	Robust to missing data, handles outliers, automatically detects changepoints, and incorporates domain knowledge easily.	Less effective for non-daily data or complex patterns, and may struggle with short-term forecasts.
Theta	Statistical	Decomposes data into two 'theta lines' for different trend assumptions (e.g., long and short-term components).	Time series data with trends.	Simple, effective for data with a trend.	Less effective for seasonal or non-linear data. Offers limited flexibility for complex patterns.
Simple Moving Average	Statistical	Calculates average over a fixed window of past observations (n).	Smoothing noisy data, simple forecasts.	Simple to understand and implement.	Not adaptive, lags in response to real trend changes.
VAR	Statistical	Vector Autoregression, multivariate linear model relating different time series variables.	Multivariate time series data.	Captures relationships between multiple series, good for stationary series.	Requires all series to be stationary, high computational cost.
Croston's Method	Statistical	Separately forecasts non- zero demand sizes and intervals and adjusts for intermittent demand.	Forecasting intermittent demand.	Good for sparse or intermittent data.	May be biased, assumes demand pattern does not change.
LSTM	ML	A type of recurrent neural network that uses gates to control information flow.	Complex patterns, large datasets, non- linear relationships.	Good for capturing long dependencies, non- linear patterns.	Requires large datasets, computationally intensive. Blackbox nature limits interpretability.
Neural Networks	ML	Layers of interconnected neurons learning data features.	Complex nonlinear patterns, high- dimensional data.	Highly flexible, powerful for complex patterns and can handle non- linear relationships.	Requires large data and careful feature engineering, prone to overfitting, black box.
Gaussian Process Regression	ML	Non-parametric kernel- based probabilistic model.	Small to medium datasets, needing uncertainty estimation.	Provides uncertainty measures, flexible.	Computationally expensive, not for large data.
KNN	ML	Predicts based on similar historical patterns by using 'k' nearest points for prediction.	Small datasets, simple non-linear patterns.	Simple, non-parametric, and effective for non- linearities in small datasets.	Not scalable, sensitive to the choice of k and noisy data.
SVR	ML	Fits within a certain threshold and finds the optimal hyperplane in high- dimensional space.	Regression with clear margin of error.	Effective in high- dimensional space, robust to outliers.	Requires good parameter tuning, and can be computationally intensive for very large datasets.
Random Forest	ML	Ensemble of decision trees, averaging to improve prediction.	Various problems.	Robust, handles overfitting well, good for mixed data types,	Requires feature engineering for temporal aspects.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

				and can provide feature importance	
XGBoost	ML	Gradient boosting with decision trees optimized for speed and performance.	Various problems.	Fast, scalable, high performance, handles various data types.	Prone to overfitting if not tuned properly.
Gradient Boosting	ML	Sequential correction of predecessor's errors, using decision trees.	Various problems.	Reduces bias and variance, powerful.	Computationally intensive and prone to overfitting.
CatBoost	ML	Categorical Boosting.	Datasets with many categorical features.	Efficient with categorical data, less prone to overfitting.	Slightly slower compared to other boosting methods.
Bagging	ML	Bootstrap aggregating, reduces variance by averaging a set of parallel estimators.	Reducing variance in noisy data sets.	Reduces overfitting, robust to noisy data.	Can be less effective on biased models, high memory consumption.

632

633 4.0 Description of benchmarking experiments, metrics, and datasets

This benchmarking analysis involves a set of 25 synthetic and 25 real timeseries. This analysis was run and evaluated in a Python 3.10.5 environment using an Intel(R) Core(TM) i7-9700F CPU @ 3.00GHz and an installed RAM of 32.0GB. All algorithms were run in default settings to allow fairness and ensure reproducibility, and the performance of each algorithm was evaluated through several metrics, as discussed below and listed in Table 2. These metrics, along with the selected sizes of datasets, followed the recommendations of [7,61].

We utilize four primary metrics that can be classified under global/general and specific/internal 640 metrics. The global metrics are suitable for broad comparisons and evaluations across multiple 641 datasets and models (e.g., Mean Absolute Scaled Error (MASE) and Dynamic Time Warping 642 (DTW)). On the other hand, internal metrics are used to provide detailed insights into particular 643 aspects of model performance (such as mean absolute deviation (MAD) and direction accuracy 644 (DA)). It is worth noting that other metrics (i.e., Root Mean Square Error (RMSE) and the Mean 645 Absolute Error (MAE)) were not used herein due to their inherent limitations and vulnerabilities 646 with respect to time series analysis, as pointed out by [62,63]. 647

The MASE is a relative measure of forecast accuracy that scales the forecast error by the in-sample 648 mean absolute error. MASE is scale-independent and can be used to compare forecast accuracy 649 across different time series [64,65]. DTW measures the similarity between two time series by 650 finding an optimal alignment between them. Unlike simple distance measures, DTW can handle 651 time shifts and distortions by allowing flexible matching of time indices [66]. The MAD measures 652 the average absolute error between the actual and forecasted values to clearly indicate the average 653 magnitude of forecast errors [67]. The DA measures how well the model predicts the direction of 654 the time series movement. This metric evaluates whether the forecast correctly predicts the 655 increase or decrease in the actual values from one time point to the next. 656

Table 2 List of performance metrics.

Туре	Metric	Formula
Specific/Internal	Mean Absolute	$MAD = \frac{1}{n} \sum_{t=1}^{n} y_t - \hat{y_t} $ Where:
Metrics	Deviation (MAD)	• y_t is the actual value at time t.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

		• y [*] _t is the forecasted value at time t. n is the total number of observations.
	Direction Accuracy (DA)	$DA = \frac{1}{n-1} \sum_{t=2}^{n} II((y_t - y_{t-1})(\hat{y}_t - \hat{y}_{t-1}) > 0)$ Where: • y_t is the actual value at time t. • y^{+}_t is the forecasted value at time t. • II is the indicator function that equals 1 if the condition inside is true and 0 otherwise. • n is the total number of observations.
Global/External Metrics	Mean Absolute Scaled Error (MASE)	$MASE = \frac{\frac{1}{n}\sum_{t=1}^{n} y_t - \hat{y}_t }{\frac{1}{n}\sum_{t=1}^{n} y_t - y_{t-1} }$ Where: • y_t is the actual value at time t. • y^{Λ}_t is the forecasted value at time t. • n is the total number of observations.
	Dynamic Time Warping (DTW)	$DTW(A,B) = min \sqrt{\sum_{i=2}^{n} (a_i - b_i)^2}$ Where: • A=(a_1,a_2,,a_n) and B = (b_1,b_2,,b_m) are two sequences of length n and m respectively. • i' is the optimal alignment index of b corresponding to a_i.

658

659 *4.1 Synthetic datasets*

Twenty five synthetic timeseries of various scenarios were generated and examined by all 660 algorithms (see Fig. 1 and Table 3). These timeseries were generated via the generate time series 661 function, which allows researchers to generate controlled datasets that can be used to benchmark 662 and evaluate the performance of time series forecasting models. This particular function accepts a 663 specific mathematical function and the number of data points (n points) as input parameters. Then, 664 this function generates a sequence of equally spaced time points over a specified range (t max). 665 The chosen function is applied to these time points to produce the corresponding time series data. 666 Gaussian noise is added to simulate real-world conditions where data often includes random 667 variations. The generate time series function starts by creating an array of time points using 668 numpy.linspace, which ensures an even distribution of points between 0 and the specified t max. 669 This array of time points, t, is then passed to the provided time series function (func), which applies 670 the mathematical transformation and returns the resulting data series. 671

Table 3 Parameters used in the synthetic timeseries

Function	Description	Mathematical Expression	Noise Level	Characteristics
Linear trend	Linear increase with Gaussian noise	0.5t+e	σ=0.1	Simple trend
Quadratic trend	Quadratic increase with Gaussian noise	0.05t ² +e	σ=0.1	Parabolic trend
Exponential growth	Exponential increase with Gaussian noise	e ^{0.1t} +€	σ=0.1	Exponential trend
Sino wayo (soasonal)	Poriodic sine wave with Gaussian noise	$\sin(2\pi t)$	σ=0_1	Seasonal, periodic
Sille wave (seasolial)	Periodic sine wave with Gaussian hoise	SIII(2/IL)+E	0-0.1	pattern

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

Cosine wave with	Cosine wave superimposed on a linear	cos(2πt)+0.1t+ε	σ=0.1	Trend and seasonality
linear trend	trend with noise			combination
Composite of sine waves	Multiple sine waves combined with Gaussian noise	sin(2πt)+0.5sin(4πt)+ε	σ=0.1	Multiple seasonalities
Logistic growth	Sigmoidal growth with Gaussian noise	1/1+e-t+5+e	σ=0.05	Non-linear growth
Damped oscillation	Exponentially damped sine wave with noise	$e^{-0.1t}sin(2\pi t)+\varepsilon$	σ=0.05	Oscillatory effect
Step function	Discrete steps with Gaussian noise	step(t)+e	σ=0.1	Abrupt changes
Sawtooth wave	Linear periodic rise with a drop and Gaussian noise	(t%1)+e	σ=0.05	Sharp transitions
Square wave	Alternating high and low values with Gaussian noise	sign(sin($2\pi t$))+e	σ=0.1	Discrete, binary states
Exponential decay	Exponential decrease with Gaussian noise	e ^{-0.2t} +€	σ=0.05	Decay trend
Logarithmic growth	Logarithmic increase with Gaussian noise	log(t+1)+€	σ=0.1	Logarithmic trend
Composite trend, seasonal, and noise	Combination of quadratic trend, sine wave, and noise	$0.01t^2$ +sin($2\pi t$)+ 0.5ε	σ=1	Complex pattern
Autocorrelated process (AR(1))	Autoregressive process with Gaussian noise	$0.8y_{t-1}+\varepsilon$	σ=0.5	Dependency on previous values
Polynomial trend (cubic)	Cubic polynomial trend with Gaussian noise	$0.01t^{3}-0.1t^{2}+0.5t+\varepsilon$	σ=0.1	Higher-order polynomial trend
Sigmoid function	Sigmoidal growth with Gaussian noise	1/1+e⁻¹+5+€	σ=0.05	Non-linear growth
Impulse response	Exponentially decaying sinusoidal impulse with noise	$e^{-t}sin(2\pi t)+\varepsilon$	σ=0.05	Impulse-like behavior
Cyclical pattern with trend	Sine wave with linear trend and Gaussian noise	$sin(2\pi t/5)+0.05t+\varepsilon$	σ=0.1	Cyclic and trending
Composite of exponential growth and seasonal pattern	Exponential growth with superimposed sine wave and noise	$e^{0.05t}$ +0.5sin(2 π t)+e	σ=0.1	Complex trend and seasonality
Piecewise linear function	Linear segments with Gaussian noise	piecewise(t)+ ϵ	σ=0.1	Segmented linear behavior
Brownian motion (random walk)	Cumulative sum of Gaussian noise	Σe	σ=0.1	Stochastic, random walk
Composite of multiple trends	Combination of quadratic, sinusoidal, and exponential trends with noise	0.01t ² +0.1sin(2πt)+0.05e ^{0.1t} + ε	σ=0.1	Multiple trend components
Chaotic logistic map	Logistic map function with chaos	3.9t(1−t)+€	σ=0.1	Chaotic behavior
GARCH-like volatility clustering	Gaussian noise with time-varying volatility	$N[(0, 0.1 + 0.9 abs(y_{t-1})]$	(0, 0.1 + 0.9) abs (y_{t-1})	Volatility clustering

673

Please cite this paper as:

674 675

Fig. 1 Visualization of the synthetic datasets

The outcome of the benchmarking analysis on the synthetic datasets is listed in Table 4. As one can see, this table showcases three different ranking methods (namely, based on the average ranking, normalized ranking, and wins). All ranking systems used the abovementioned DA, DTW, MASE, and MAD metrics, wherein lower values indicate better performance (rank 1 is best), except for the DA metric, where higher values indicate better performance (rank 1 is best).

Please cite this paper as: Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

The first ranking system represents averages across all datasets for each algorithm. Each metric 681 was ranked individually, and the average of these ranks determined the Average Rank for each 682 algorithm. The Final Rank was then assigned based on the Average Rank values. Then, the second 683 ranking system involves averaging the original metric values across all datasets for each algorithm. 684 These averages were then normalized to a 0-1 scale for each metric. The Average Normalized Score 685 is then computed as the mean of all normalized metric scores for each algorithm, and the Final 686 Rank is derived from these average normalized scores to allow for a fair comparison across 687 different metrics and algorithms. Finally, the third ranking system adopted the ranking by Wins 688 method. In this system, metric values were averaged across all datasets for each algorithm. Each 689 metric was ranked individually. The rank columns display the rank for each metric, and the 690 Average Rank reflects the mean of these ranks for each algorithm. The Final Rank was determined 691 based on the Average Rank values. This ranking method aimed to balance performance across all 692 metrics, emphasizing how frequently each algorithm performed best in each metric. 693

Table 4 presents a collective view of the algorithmic performance across the different datasets and 694 systems used. As one can see, SPINEX ranks 5th under the first ranking system and 1st under the 695 other two ranking systems. Despite not being the top-ranked algorithm in the first ranking system, 696 SPINEX consistently performed well across different metrics. This performance suggests a well-697 rounded response. When comparing SPINEX to other algorithms such as SARIMA, Prophet, Holt-698 Winters, and Theta, it is evident that SPINEX stands out regarding consistent performance and 699 robustness. Similarly, Prophet and Theta showed competitive performance but could not match 700 SPINEX's consistency across all ranking systems. 701

Algorithm	Direction Accuracy	DTW	MASE	MAD	Direction Accuracy (rank)	DTW (rank)	MASE (rank)	MAD (rank)	Average (rank)	Final (rank)
				Based	on average ranking	s				
SARIMA	0.578	15.353	2625.313	0.116	3.570	5.830	7.890	9.250	6.640	1
Prophet	0.546	2.058	58.910	0.095	3.870	6.210	7.430	9.030	6.640	2
Holt-Winters	0.572	15.419	46.643	0.291	3.360	6.400	7.980	8.910	6.660	3
Theta	0.550	2.451	82.481	0.100	3.600	7.080	7.520	9.660	6.960	4
SPINEX	0.602	1.956	45.676	0.075	3.230	6.840	10.300	8.950	7.330	5
ARIMA	0.264	2.544	84.369	0.097	7.190	8.800	7.900	6.980	7.720	6
Croston	0.000	2.602	87.962	0.101	10.370	9.130	7.850	5.360	8.180	7
ETS	0.000	2.603	87.962	0.101	10.370	9.360	7.980	5.350	8.260	8
LSTM	0.502	3.756	115.265	0.090	4.390	9.060	9.500	10.140	8.270	9
Random Forest	0.000	2.698	88.205	0.101	10.370	10.120	8.990	5.290	8.690	10
Bagging	0.000	2.698	88.205	0.101	10.370	10.120	8.990	5.290	8.690	10
Gradient Boosting	0.000	2.689	88.144	0.101	10.370	10.210	8.950	5.470	8.750	12
XGBoost	0.000	2.695	88.281	0.101	10.370	10.560	9.310	5.340	8.890	13
SMA	0.000	2.669	88.733	0.101	10.370	10.530	9.640	5.400	8.980	14
KNN	0.000	2.669	88.733	0.101	10.370	10.530	9.590	5.450	8.990	15
CatBoost	0.000	2.666	89.402	0.101	10.370	10.990	9.820	5.330	9.130	16
Neural Network	0.518	6.952	194.656	0.110	3.660	13.880	14.080	11.850	10.870	17
SVR	0.166	4.262	157.608	0.115	7.750	13.230	14.220	11.280	11.620	18
Gaussian Process	0.255	7.354	144.260	0.097	6.840	15.660	16.440	9.300	12.060	19
				Based or	n normalized rankir	ngs				
SPINEX	0.602	1.956	45.676	0.075	0.000	0.000	0.000	0.000	0.000	1
Prophet	0,546	2.058	58,910	0.095	0.094	0.008	0.005	0.093	0.050	2

Table 4 Ranking results on real data

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

Theta	0.550	2.451	82.481	0.100	0.087	0.037	0.014	0.115	0.063	3
LSTM	0.502	3.756	115.265	0.090	0.167	0.134	0.027	0.070	0.100	4
ARIMA	0.264	2.544	84.369	0.097	0.562	0.044	0.015	0.103	0.181	5
Neural Network	0.518	6.952	194.656	0.110	0.139	0.371	0.058	0.164	0.183	6
Gaussian Process	0.255	7.354	144.260	0.097	0.577	0.401	0.038	0.103	0.280	7
SVR	0.166	4.262	157.608	0.115	0.725	0.171	0.043	0.184	0.281	8
Croston	0.000	2.602	87.962	0.101	1.000	0.048	0.016	0.119	0.296	9
ETS	0.000	2.603	87.962	0.101	1.000	0.048	0.016	0.119	0.296	10
KNN	0.000	2.669	88.733	0.101	1.000	0.053	0.017	0.119	0.297	11
SMA	0.000	2.669	88.733	0.101	1.000	0.053	0.017	0.119	0.297	11
CatBoost	0.000	2.666	89.402	0.101	1.000	0.053	0.017	0.119	0.297	13
Gradient Boosting	0.000	2.689	88.144	0.101	1.000	0.054	0.016	0.119	0.297	14
XGBoost	0.000	2.695	88.281	0.101	1.000	0.055	0.017	0.119	0.298	15
Random Forest	0.000	2.698	88.205	0.101	1.000	0.055	0.016	0.119	0.298	16
Bagging	0.000	2.698	88.205	0.101	1.000	0.055	0.016	0.119	0.298	16
Holt-Winters	0.572	15.419	46.643	0.291	0.051	1.000	0.000	1.000	0.513	18
SARIMA	0.578	15.353	2625.313	0.116	0.040	0.995	1.000	0.192	0.557	19
				B	ased on wins					
SPINEX	0.602	1.956	45.676	0.075	1	1	1	1	1	1
Prophet	0.546	2.058	58.910	0.095	5	2	3	3	3.25	2
Theta	0.550	2.451	82.481	0.100	4	3	4	6	4.25	3
ARIMA	0.264	2.544	84.369	0.097	8	4	5	4	5.25	4
Croston	0.000	2.602	87.962	0.101	11	5	6	7	7.25	5
ETS	0.000	2.603	87.962	0.101	11	6	7	7	7.75	6
Gradient Boosting	0.000	2.689	88.144	0.101	11	10	8	7	9	7
SMA	0.000	2.669	88.733	0.101	11	8	12	7	9.5	8
LSTM	0.502	3.756	115.265	0.090	7	14	15	2	9.5	8
KNN	0.000	2.669	88.733	0.101	11	8	12	7	9.5	8
Random Forest	0.000	2.698	88.205	0.101	11	12	9	7	9.75	11
CatBoost	0.000	2.666	89.402	0.101	11	7	14	7	9.75	11
Bagging	0.000	2.698	88.205	0.101	11	12	9	7	9.75	11
XGBoost	0.000	2.695	88.281	0.101	11	11	11	7	10	14
Holt-Winters	0.572	15.419	46.643	0.291	3	19	2	19	10.75	15
Gaussian Process	0.255	7.354	144.260	0.097	9	17	16	5	11.75	16
Neural Network	0.518	6.952	194.656	0.110	6	16	18	16	14	17
SARIMA	0.578	15.353	2625.313	0.116	2	18	19	18	14.25	18
SVR	0.166	4.262	157.608	0.115	10	15	17	17	14.75	19

703

Figure 2 shows a more detailed examination of the performance of all algorithm algorithms evaluated across different settings and metrics. This evaluation was conducted for two different parameters: maximum time (t_{max}) and number of sequence points (n_{points}).

In terms of DA, which measures how well the model predicts the direction of the time series 707 movement, SPINEX maintained strong performance across both settings. The graphs indicate that 708 SPINEX's performance remained relatively stable and high compared to other algorithms as the sub-709 settings increased. Such stability can be crucial for applications requiring reliable directional 710 predictions. More specifically, in the t_{max} graph, SPINEX showed a slight improvement with higher 711 sub-settings, indicating its adaptability to longer forecasting horizons. Similarly, in the n_{points} 712 graph, SPINEX outperformed most other algorithms, demonstrating its effectiveness in handling 713 varying data point quantities. 714

For the DTW metric, which measures the alignment between predicted and actual time series, SPINEX also performed well across different settings. In both graphs, SPINEX maintained lower

Please cite this paper as: Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

DTW values, indicating closer alignment and better predictive accuracy. The t_{max} graph shows that SPINEX's DTW values remained relatively stable, suggesting its robustness to changes in the forecast length. The n_{points} graph further highlights SPINEX's capability to handle datasets with varying numbers of points without significant loss in accuracy. Furthermore, SPINEX maintained lower MASE and MAD values compared to many other algorithms. This performance indicates that SPINEX can provide accurate forecasts. Figure 3 presents a visual example of two time series as predicted by SPINEX and other algorithms. Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. https://doi.org/10.1016/j.cie.2024.110812.

Algorithm Performance Across Settings

Please cite this paper as:

725

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

1.0 0.8 0.6 0.4 0.3 Random Forest XGB 1.0 0.4 0.6 0.4 0.3 Holt-Winters imple Moving Averag 1.0 0.8 0.6 0.4 0.3 Gradient Boosting Bagging 1.0 0.8 0.0 0.2 Neural Network CatBoos 1.0 0.8 0.3

Figure 2 Individual rankings per algorithm for the internal and external metrics.

Please cite this paper as:

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

- 730 *4.2 Real datasets*
- 731 Twenty four real datasets were used herein to further evaluate the performance of SPINEX against
- the other algorithms listed above. These datasets span univariate and multivariate scenarios(see
- Table 5 and Fig. 4). Additional details can be found in the cited sources.

Туре	Dataset Name	Samples*	Features	References
	Airline Passengers	144	2	[68]
	Sunspots	2820	2	[69]
	Daily Female Births	365	2	[70]
	Yearly Water Usage	79	2	[71]
	Daily Minimum Temperatures	3650	2	[72]
	Monthly Car Sales	108	2	[73]
Univariate	Shampoo Sales Data	36	2	[74]
	Temperature Data	3650	2	[75]
	Monthly Writing Paper Sales	147	2	[76]
	Monthly Champagne Sales	105	2	[77]
	Monthly Robberies	118	2	[78]
	Electric Production	397	2	[79]
	Web Traffic Dataset	550	2	[80]
	Stock and PM2.5 Prediction	5650	10	[81]
	Tata Global Forecasting	2100	8	[82]
	International Airline Passengers	13391	6	[83]
	Pollution Dataset	43824	13	[84]
	Daily Stock Prices	52000	8	[85]
Multivariate	ETT-small	17420	8	[86]
	Jaipur Final Clean Data	676	40	[87]
	Aprocessed	604802	17	[88]
	Insurance	1338	7	[89]
	Indian Crime Data Analysis Forecasting I	9840	33	[90]
	Indian Crime Data Analysis Forecasting II	295374	3	[90]

Table 5 Real datasets used in the analysis

735

*Large datasets were stopped at 5000 data points, given the computational resources available during this study.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. https://doi.org/10.1016/j.cie.2024.110812.

736

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

737

Fig. 4 Visualization of the real datasets

The benchmarking and ranking analysis results are examined similarly to the case of synthetic data

by using the average, normalized, and win methods. These results are listed in Table 6. This table

shows that SPINEX consistently ranks in the top two positions, along with the Holt-Winters

741 algorithm.

742 Table 6 Ranking results on real data

Algorithm	Direction Accuracy	DTW	MASE	MAD	Direction Accuracy (rank)	DTW (rank)	MASE (rank)	MAD (rank)	Overall rank	Final (rank)
				Based	on average ranking	s				
Holt-Winters	0.549	1.998	3.807	0.060	5.400	9.960	13.960	15.960	11.320	1
SPINEX	0.563	1.635	2.671	0.063	5.320	5.080	17.240	18.520	11.540	2
SARIMA	0.540	2.422	3.778	0.065	5.400	11.160	16.040	15.800	12.100	3
Prophet	0.464	2.100	6.896	0.071	8.440	8.680	13.560	19.640	12.580	4
Theta	0.491	2.299	13.739	0.073	6.760	13.400	18.040	13.160	12.840	5
SMA	0.000	2.472	23.792	0.078	20.040	19.320	14.840	10.600	16.200	6
LSTM	0.402	15.077	48.378	0.075	9.500	17.420	20.670	17.830	16.350	7
KNN	0.000	2.472	23.792	0.078	20.040	19.720	15.160	10.600	16.380	8
XGBoost	0.000	2.594	24.067	0.078	20.040	20.200	16.840	10.280	16.840	9
Gradient Boosting	0.000	2.567	24.043	0.078	20.040	20.120	16.680	10.760	16.900	10
Random Forest	0.000	2.597	23.894	0.078	20.040	20.920	16.680	11.080	17.180	11
Bagging	0.000	2.597	23.894	0.078	20.040	20.920	16.680	11.080	17.180	11
CatBoost	0.000	2.629	24.776	0.078	20.040	21.640	18.200	9.960	17.460	13
Croston	0.000	2.610	23.925	0.078	20.040	21.400	19.400	10.840	17.920	14
ETS	0.000	2.612	23.927	0.078	20.040	21.800	19.480	10.840	18.040	15
ARIMA	0.146	2.536	23.839	0.079	15.400	21.000	20.440	17.640	18.620	16
SVR	0.156	3.348	105.681	0.093	15.080	21.480	23.080	19.880	19.880	17
Neural Network	0.489	5.460	37.621	0.084	6.360	27.320	26.040	20.920	20.160	18
Gaussian Process	0.197	6.240	159.080	0.082	13.080	33.640	32.200	19.560	24.620	19
				Based on	normalized rankir	ngs	•		•	
Holt-Winters	0.549	1.998	3.807	0.060	0.024	0.027	0.007	0.000	0.015	1
SPINEX	0.563	1.635	2.671	0.063	0.000	0.000	0.000	0.093	0.023	2
SARIMA	0.540	2.422	3.778	0.065	0.039	0.059	0.007	0.176	0.070	3
Prophet	0.464	2.100	6.896	0.071	0.176	0.035	0.027	0.333	0.143	4
Theta	0.491	2.299	13.739	0.073	0.126	0.049	0.071	0.400	0.161	5
Neural Network	0.489	5.460	37.621	0.084	0.130	0.285	0.223	0.730	0.342	6
ARIMA	0.146	2.536	23.839	0.079	0.740	0.067	0.135	0.580	0.381	7
Simple	0.000	2.472	23.792	0.078	1.000	0.062	0.135	0.546	0.436	8
KNN	0.000	2.472	23.792	0.078	1.000	0.062	0.135	0.546	0.436	9
Gradient Boosting	0.000	2.567	24.043	0.078	1.000	0.069	0.137	0.546	0.438	10
Bagging	0.000	2.597	23.894	0.078	1.000	0.072	0.136	0.546	0.438	11
Random	0.000	2.597	23.894	0.078	1.000	0.072	0.136	0.546	0.438	11
XGBoost	0.000	2.594	24.067	0.078	1.000	0.071	0.137	0.546	0.438	13
Croston	0.000	2.610	23.925	0.078	1.000	0.072	0.136	0.546	0.439	14
ETS	0.000	2.612	23.927	0.078	1.000	0.073	0.136	0.546	0.439	15
CatBoost	0.000	2.629	24.776	0.078	1.000	0.074	0.141	0.546	0.440	16
LSTM	0.402	15.077	48.378	0.075	0.286	1.000	0.292	0.456	0.508	17
SVR	0.156	3.348	105.681	0.093	0.722	0.127	0.659	1.000	0.627	18
Gaussian Process	0.197	6.240	159.080	0.082	0.650	0.343	1.000	0.672	0.666	19
				B	ased on wins		•		•	
SPINEX	0.563	1.635	2.671	0.063	1	1	1	2	1.25	1
Holt-Winters	0.549	1.998	3.807	0.060	2	2	3	1	2	2
SARIMA	0.540	2.422	3.778	0.065	3	5	2	3	3.25	3
Prophet	0.464	2.100	6.896	0.071	6	3	4	4	4.25	4
Theta	0.491	2.299	13.739	0.073	4	4	5	5	4.5	5
SMA	0.000	2.472	23.792	0.078	11	6	6	7	7.5	6
KNN	0.000	2.472	23,792	0.078	11	7	7	7	8	7
ΔΒΙΜΔ	0.146	2 5 3 6	23,839	0.079	10	8	2	16	10.5	8
XGBoost	0.000	2.550	24.067	0.078	11	10	14	7	10.5	8
Croston	0.000	2.554	22.007	0.079	11	12	11	7	10.5	0
Croston	0.000	2.010	23.925	0.078	11	13	11	/	10.5	ŏ

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

ETS	0.000	2.612	23.927	0.078	11	14	12	7	11	11
Random Forest	0.000	2.597	23.894	0.078	11	11	9	13	11	11
Bagging	0.000	2.597	23.894	0.078	11	11	9	13	11	11
Gradient Boosting	0.000	2.567	24.043	0.078	11	9	13	13	11.5	14
CatBoost	0.000	2.629	24.776	0.078	11	15	15	7	12	15
LSTM	0.402	15.077	48.378	0.075	7	19	17	6	12.25	16
Neural Network	0.489	5.460	37.621	0.084	5	17	16	18	14	17
Gaussian Process	0.197	6.240	159.080	0.082	8	18	19	17	15.5	18
SVR	0.156	3.348	105.681	0.093	9	16	18	19	15.5	18

743

Figure 5 illustrates the performance of various algorithms across different settings and metrics. Each of these metrics is evaluated across two settings: dataset length (short [datasets of less than 200 points] vs. long [datasets of more than 200 points]) and dataset type (univariate vs. multivariate). Overall, one can see the performance of SPINEX matches well with other algorithms and, in some cases, outperforms them.

For example, in the DA plots, SPINEX demonstrates a notable trend for short and long sequences and univariate and multivariate data. This suggests that SPINEX is proficient at predicting the correct direction. In the DTW metric, SPINEX exhibits a lower DTW value for short sequences, which indicates a higher similarity and better alignment of time series data than other algorithms. However, as the sequence length extends, SPINEX's DTW value increases, suggesting that its ability to maintain similarity diminishes slightly with longer sequences. This observation holds for the

via uni and multivariate datasets and other algorithms.

The MASE metric plots reveal that SPINEX performs consistently well across different lengths and

types, with slightly better performance for short and univariate sequences. This trend continues for

long sequences, where SPINEX remains competitive. It is worth noting that this algorithm maintains

the lowest average MASE for long and multivariate sequences among the other algorithms.

Finally, the MAD metric shows that SPINEX consistently achieves low values across both length and type dimensions.

31

Please cite this paper as:

Please cite this paper as:

- Figure 5 Further analysis in terms of dataset length and type
- Figure 6 presents a sample of a visual representation of two time series as predicted by SPINEX and
- other algorithms. These two datasets represent those that fall under short and long time series. In
- ⁷⁶⁶ both cases, it is clear that the forecasts by SPINEX are in good agreement with the actual series.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

767

```
Please cite this paper as:
```


770

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

4.3 Dataset examination and Pareto efficiency analysis

Once the above analysis was completed, the same results were examined to identify the most reoccurring complex datasets that received the poorest performance and the most consistently ranked datasets with the best performance across all algorithms. The outcome of this analysis is listed in Table 7. This table shows the top 3 datasets in each category and synthetic and real datasets. Interestingly, all complex datasets are univariates, while those that fall under the consistent datasets have a mixture of both types.

Туре	Complex Dataset	Characteristics	Occurrences	Consistent Dataset	Characteristics	Occurrences
	Dataset 27	t _{max} : 100, n_ _{points} : 5000	17	Dataset 106	t _{max} : 100, n_ _{points} : 50	9
Synthetic data	Dataset 96	t _{max} : 10, n_ _{points} : 5000	14	Dataset 115	t _{max} : 100, n_ _{points} : 50	9
	Dataset 99	t _{max} : 100, n_ _{points} : 5000	8	Dataset 91	t _{max} : 1, n_ _{points} : 50	9
	Sunspots	2820/2	15	Yearly Water Usage	79/2	13
Real data	Stock and PM2.5 Prediction	5650/10	14	Tata Global Forecasting	2100/8	10
	Indian Crime II	550/2	8	Jaipur	676/40	7

778 Table 7 Dataset examination

779

A Pareto analysis is performed on synthetic datasets to determine the best-performing time series 780 algorithms based on the selected evaluation metrics (see Table 8). This analysis employs Pareto 781 optimality to identify non-dominated solutions (i.e., those representing optimal trade-offs between 782 different performance metrics: DA, DTW, MASE, and MAD). The concept of Pareto optimality 783 ensures that the final set of recommended algorithms consists of truly superior options, each 784 offering a distinct balance of strengths across various performance criteria. The process starts by 785 normalizing all metrics to a 0-1 scale using min-max normalization. The normalized data is then 786 grouped by algorithm and dataset to calculate mean values for each metric. Each algorithm further 787 aggregates these grouped results to evaluate overall performance across all datasets. Then, a 788 solution is Pareto optimal if no other solution is superior in all metrics simultaneously. 789

790 Table 8 Pareto analysis

-					
Algorithm	Direction Accuracy	DTW	MASE	MAD	Pareto Efficient
SPINEX	0.602	1.956	45.676	0.075	TRUE
Holt-Winters	0.572	15.419	46.643	0.291	TRUE
Theta	0.550	2.451	82.481	0.100	TRUE
LSTM	0.502	3.756	115.265	0.090	TRUE
Prophet	0.546	2.058	58.910	0.095	FALSE
ARIMA	0.264	2.544	84.369	0.097	FALSE
Croston	0.000	2.602	87.962	0.101	FALSE
ETS	0.000	2.603	87.962	0.101	FALSE
Gradient Boosting	0.000	2.689	88.144	0.101	FALSE
Random Forest	0.000	2.698	88.205	0.101	FALSE
Bagging	0.000	2.698	88.205	0.101	FALSE
XGBoost	0.000	2.695	88.281	0.101	FALSE
Simple Moving Average	0.000	2.669	88.733	0.101	FALSE
KNN	0.000	2.669	88.733	0.101	FALSE

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

CatBoost	0.000	2.666	89.402	0.101	FALSE
Gaussian Process	0.255	7.354	144.260	0.097	FALSE
SVR	0.166	4.262	157.608	0.115	FALSE
Neural Network	0.518	6.952	194.656	0.110	FALSE
SARIMA	0.578	15.353	2625.313	0.116	FALSE

791

792 *4.4 Complexity analysis*

We evaluate the complexity of the selected algorithms by analyzing the execution time data across 793 across 50, 500, and 5000 samples (n). Then, we fit three types of models to this data: polynomial 794 (linear in log-log scale), logarithmic, and exponential. For each algorithm, we compute the 795 regression parameters and the R² values for these models as a means to measure the goodness of 796 fit and the model with the highest R² value is considered the best fit, and its corresponding Big O 797 notation is recorded. This analysis reveals that SPINEX demonstrates logarithmic complexity and 798 hence indicates that its execution time scales efficiently with the logarithm of the input size, 799 represented as O(log n), as seen in Fig. 7. It is worth noting that this algorithm was found to have 800 only logarithmic complexity, while others had polynomial or exponential complexity (see Table 801 9). However, and from a scalable perspective, this complexity of SPINEX arises from the 802 integration of multiple similarity measures (as well as the embedded dynamic adjustments) within 803 the algorithm. The overhead of these settings may pose challenges in practical implementations 804 when this algorithm is used in large datasets. This can be thought of as one challenge that could 805 be revisited and overcome in the near future. 806

⁸⁰⁹ Table 9 Complexity analysis

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

Algorithm	Complexity type	R ²	Big O notation
Prophet	exp	0.84	O(e ⁿ)
ETS	exp	0.94	O(e ⁿ)
XGBoost	exp	0.92	O(e ⁿ)
Theta	exp	0.85	O(e ⁿ)
Simple Moving Average	exp	0.98	O(e ⁿ)
Holt-Winters	exp	0.99	O(e ⁿ)
Croston	exp	0.89	O(e ⁿ)
Gradient Boosting	exp	1.00	O(e ⁿ)
SPINEX	log	0.98	O(log n)
CatBoost	poly	0.62*	O(n ^{0.12})
KNN	poly	0.54*	O(n ^{0.25})
ARIMA	poly	0.66*	O(n ^{0.42})
Bagging	poly	0.83	O(n ^{0.46})
Random Forest	poly	0.84	O(n ^{0.49})
SARIMA	poly	0.93	O(n ^{0.71})
Neural Network	poly	0.85	O(n ^{0.86})
LSTM	poly	1.00	O(n ^{0.93})
SVR	poly	0.72	O(n ^{1.36})
Gaussian Process	poly	0.97	O(n ^{1.72})

810 * note the low value.

811 4.5 Explainability analysis

To showcase the explainability capabilities of SPINEX, two synthetic datasets (No. 1 and No. 11)

are provided herein, as taken from two different datasets. Figure 8 shows the predicted segment

and three of its neighbors. The same plot also visually represents the neighbors and their overall

similarity as compared to the segment at hand. For example, this figure represents the top three

selected time segments that align the most with the current segment being investigated by SPINEX.

As one can see, the identified segments (i.e., neighbors) align well with the current segment –

818 which further showcases the applicability of SPINEX. The companion similarity score plot also,

visually, presents the importance of the similarity metrics selected by the user in each case and

notes how each similarity measure relates to the identified segments. Finally, this plot also shows

the individual scores of the similarity measures used to identify them.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

822

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

826 827

828

(b) Dataset 11 Fig. 8 Example of explainability capability of SPINEX

829 5.0 Conclusions

This paper introduces a novel member of the SPINEX (Similarity-based Predictions with Explainable 830 Neighbors Exploration) family. This new algorithm enhances time series analysis performance by 831 leveraging the concept of similarity, higher-order temporal interactions across multiple time scales, 832 and explainability. The effectiveness of the proposed SPINEX variant was evaluated through a 833 comprehensive benchmarking study involving 18 time series forecasting algorithms across 49 834 datasets. Our findings from our experiments indicate that SPINEX consistently ranks within the top-835 5 best-performing algorithms, showcasing its Pareto efficacy in time series forecasting and pattern 836 recognition while maintaining moderate computational complexity on the order of O(log n). 837 Moreover, the algorithm's explainability features, Pareto efficiency, and medium complexity are 838 demonstrated through detailed visualizations to enhance the prediction and decision-making 839 process. 840

Despite the noted positive findings, there are several promising avenues for future research to 841 further enhance SPINEX's capabilities and applicability. To start with, this algorithm can be 842 extended to handle multivariate time series, which could broaden its use cases. Second, while 843 SPINEX dynamically adjusts its internal parameters, further exploration of adaptive mechanisms, 844 such as reinforcement learning or metaheuristics, could dynamically optimize hyperparameters 845 during runtime. It is also worth exploring options to further enhance the algorithmic scalability for 846 large datasets by using sparse similarity matrices or approximate methods for computationally 847 expensive metrics. We are hopeful to be able to imoprve the proposed algorithm in the near future. 848 In the meantime, we also invite interested readers to spearhead the aforementioned items, as w 849

850 Data Availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

853 SPINEX can be accessed from [to be added].

854 **Conflict of Interest**

The authors declare no conflict of interest.

856 **References**

- 857 [1] Hamilton, Time series analysis / James D. Hamilton., Time Ser. Anal. (1993).
- J.G. De Gooijer, R.J. Hyndman, 25 years of time series forecasting, Int. J. Forecast. (2006).
 https://doi.org/10.1016/j.ijforecast.2006.01.001.
- [3] M.D. Morse, J.M. Patel, An efficient and accurate method for evaluating time series 860 similarity, in: Proc. ACM SIGMOD Int. Conf. Manag. Data, 2007. 861 https://doi.org/10.1145/1247480.1247544. 862
- [4] S. Aghabozorgi, A. Seyed Shirkhorshidi, T. Ying Wah, Time-series clustering A decade
 review, Inf. Syst. (2015). https://doi.org/10.1016/j.is.2015.04.007.
- 865 [5] S. Schmidl, P. Wenig, T. Papenbrock, Anomaly Detection in Time Series: A
 866 Comprehensive Evaluation, in: Proc. VLDB Endow., 2022.
 867 https://doi.org/10.14778/3538598.3538602.
- 868 [6] S. Lhermitte, J. Verbesselt, W.W. Verstraeten, P. Coppin, A comparison of time series
 869 similarity measures for classification and change detection of ecosystem dynamics, Remote
 870 Sens. Environ. (2011). https://doi.org/10.1016/j.rse.2011.06.020.
- [7] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E. Keogh, Experimental
 comparison of representation methods and distance measures for time series data, Data Min.
 Knowl. Discov. (2013). https://doi.org/10.1007/s10618-012-0250-5.
- [8] A. Abanda, U. Mori, J.A. Lozano, A review on distance based time series classification,
 Data Min. Knowl. Discov. (2019). https://doi.org/10.1007/s10618-018-0596-4.
- [9] H. Sakoe, S. Chiba, Dynamic Programming Algorithm Optimization for Spoken Word
 Recognition, IEEE Trans. Acoust. (1978). https://doi.org/10.1109/TASSP.1978.1163055.
- Y. Permanasari, E.H. Harahap, E.P. Ali, Speech recognition using Dynamic Time Warping
 (DTW), in: J. Phys. Conf. Ser., 2019. https://doi.org/10.1088/1742-6596/1366/1/012091.
- [11] E. Kostadinova, V. Boeva, L. Boneva, E. Tsiporkova, An integrative DTW-based
 imputation method for gene expression time series data, in: IS'2012 2012 6th IEEE Int.
 Conf. Intell. Syst. Proc., 2012. https://doi.org/10.1109/IS.2012.6335145.
- [12] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms,
 in: Proc. 7th Int. Symp. String Process. Inf. Retrieval, SPIRE 2000, 2000.
 https://doi.org/10.1109/SPIRE.2000.878178.
- 886 [13] B.D. Fulcher, Feature-Based Time-Series Analysis, in: Featur. Eng. Mach. Learn. Data

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

- 887 Anal., 2018. https://doi.org/10.1201/9781315181080-4.
- K. Mirylenka, M. Dallachiesa, T. Palpanas, Data series similarity using correlation-aware measures, in: ACM Int. Conf. Proceeding Ser., 2017. https://doi.org/10.1145/3085504.3085515.
- [15] J. Li, C. Xu, T. Zhang, Similarity Measure of Time Series Based on Siamese and Sequential
 Neural Networks, in: Chinese Control Conf. CCC, 2020.
 https://doi.org/10.23919/CCC50068.2020.9189261.
- 894[16]Z. Karevan, J.A.K. Suykens, Transductive LSTM for time-series prediction: An application895toweatherforecasting,NeuralNetworks.(2020).896https://doi.org/10.1016/j.neunet.2019.12.030.
- [17] A. Theissler, F. Spinnato, U. Schlegel, R. Guidotti, Explainable AI for Time Series
 Classification: A Review, Taxonomy and Research Directions, IEEE Access. (2022).
 https://doi.org/10.1109/ACCESS.2022.3207765.
- 900 [18] A. Nielsen, Practical Time Series: Prediction with Statistics & Machine Learning., 2019.
- [19] A. Babii, E. Ghysels, J. Striaukas, Machine Learning Time Series Regressions With an Application to Nowcasting, J. Bus. Econ. Stat. (2022).
 https://doi.org/10.1080/07350015.2021.1899933.
- Y. Ensafi, S.H. Amin, G. Zhang, B. Shah, Time-series forecasting of seasonal items sales
 using machine learning A comparative analysis, Int. J. Inf. Manag. Data Insights. (2022).
 https://doi.org/10.1016/j.jjimei.2022.100058.
- 907 [21] G.M. Box, G. E. P., & Jenkins, Time series analysis: forecasting and control. San Francisco,
 908 CA: Holden-Day., [University Wisconsut. Madison. WI Univ. OfLancaster, England].
 909 (1976).
- 910
 [22]
 S. Makridakis, M. Hibon, ARMA models and the Box-Jenkins methodology, J. Forecast.

 911
 (1997).
 https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-</td>

 912
 FOR652>3.0.CO;2-X.
- [23] J. Fattah, L. Ezzine, Z. Aman, H. El Moussami, A. Lachhab, Forecasting of demand using
 ARIMA model, Int. J. Eng. Bus. Manag. (2018).
 https://doi.org/10.1177/1847979018808673.
- 916 [24] J.D. Croston, Forecasting and Stock Control for Intermittent Demands, Oper. Res. Q.
 917 (1972). https://doi.org/10.2307/3007885.
- A. Segerstedt, E. Levén, A Study of Different Croston-Like Forecasting Methods, Oper.
 Supply Chain Manag. (2023). https://doi.org/10.31387/oscm0540400.

J.E. Boylan, A.A. Syntetos, The accuracy of a Modified Croston procedure, Int. J. Prod.
 Econ. (2007). https://doi.org/10.1016/j.ijpe.2006.10.005.

Please cite this paper as:

- R. Teunter, B. Sani, On the bias of Croston's forecasting method, Eur. J. Oper. Res. (2009).
 https://doi.org/10.1016/j.ejor.2007.12.001.
- [28] O.L. Davies, R.G. Brown, Statistical Forecasting for Inventory Control., J. R. Stat. Soc. Ser.
 A. (1960). https://doi.org/10.2307/2342487.
- [29] C.C. Holt, Forecasting seasonals and trends by exponentially weighted moving averages,
 Int. J. Forecast. (2004). https://doi.org/10.1016/j.ijforecast.2003.09.015.
- P.R. Winters, Forecasting Sales by Exponentially Weighted Moving Averages Author(s):
 Peter R. Winters Source, Manage. Sci. (1960).
- [31] C. Chatfield, M. Yar, Holt-Winters Forecasting: Some Practical Issues, Stat. (1988).
 https://doi.org/10.2307/2348687.
- [32] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Comput. (1997).
 https://doi.org/10.1162/neco.1997.9.8.1735.
- [33] C. Han, X. Fu, Challenge and Opportunity: Deep Learning-Based Stock Price Prediction by
 Using Bi-Directional LSTM Model, Front. Business, Econ. Manag. (2023).
 https://doi.org/10.54097/fbem.v8i2.6616.
- 937 [34] S.J. Taylor, B. Letham, Forecasting at Scale, Am. Stat. (2018).
 938 https://doi.org/10.1080/00031305.2017.1380080.
- M. Daraghmeh, A. Agarwal, R. Manzano, M. Zaman, Time Series Forecasting using
 Facebook Prophet for Cloud Resource Management, in: 2021 IEEE Int. Conf. Commun.
 Work. ICC Work. 2021 Proc., 2021.
 https://doi.org/10.1109/ICCWorkshops50388.2021.9473607.
- I. Svetunkov, F. Petropoulos, Old dog, new tricks: a modelling view of simple moving averages, Int. J. Prod. Res. (2018). https://doi.org/10.1080/00207543.2017.1380326.
- [37] C. Chiarella, X. He, C.H. Hommes, A Dynamic Analysis of Moving Average Rules, SSRN
 Electron. J. (2011). https://doi.org/10.2139/ssrn.742386.
- V. Assimakopoulos, K. Nikolopoulos, The theta model: A decomposition approach to forecasting, Int. J. Forecast. (2000). https://doi.org/10.1016/S0169-2070(00)00066-2.
- E. Spiliotis, V. Assimakopoulos, S. Makridakis, Generalizing the Theta method for automatic forecasting, Eur. J. Oper. Res. (2020). https://doi.org/10.1016/j.ejor.2020.01.007.
- [40] J.H. Stock, M.W. Watson, Vector autoregressions, J. Econ. Perspect. (2001).
 https://doi.org/10.1257/jep.15.4.101.
- [41] C.J. Lu, T.S. Lee, C.C. Chiu, Financial time series forecasting using independent component analysis and support vector regression, Decis. Support Syst. (2009).
 https://doi.org/10.1016/j.dss.2009.02.001.

Please cite this paper as:

- F. Canova, 53 2 Vector Autoregressive Models: Specification, Estimation, Inference, and
 Forecasting, Handb. Appl. Econom. (1999).
- [43] C.K.I. Williams, C.E. Rasmussen, Gaussian Processes for Regression, Adv. Neural Inf.
 Process. Syst. 8 (1995).
- [44] S. Aigrain, D. Foreman-Mackey, Gaussian Process Regression for Astronomical Time
 Series, Annu. Rev. Astron. Astrophys. (2023). https://doi.org/10.1146/annurev-astro 052920-103508.
- [45] J.P. Cunningham, Z. Ghahramani, C.E. Rasmussen, Gaussian Processes for time-marked
 time-series data, in: J. Mach. Learn. Res., 2012.
- [46] L.P. Swiler, M. Gulian, A.L. Frankel, C. Safta, J.D. Jakeman, A SURVEY OF
 CONSTRAINED GAUSSIAN PROCESS REGRESSION: APPROACHES AND
 IMPLEMENTATION CHALLENGES, J. Mach. Learn. Model. Comput. (2020).
 https://doi.org/10.1615/jmachlearnmodelcomput.2020035155.
- [47] L. Prokhorenkova, G. Gusev, A. Vorobev, A.V. Dorogush, A. Gulin, Catboost: Unbiased
 boosting with categorical features, in: Adv. Neural Inf. Process. Syst., 2018.
- [48] J.T. Hancock, T.M. Khoshgoftaar, CatBoost for big data: an interdisciplinary review, J. Big
 Data. (2020). https://doi.org/10.1186/s40537-020-00369-8.
- [49] S.R. Karingula, N. Ramanan, R. Tahmasbi, M. Amjadi, D. Jung, R. Si, C. Thimmisetty,
 L.F. Polania, M. Sayer, J. Taylor, C.N. Coelho, Boosted Embeddings for Time-Series
 Forecasting, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect.
 Notes Bioinformatics), 2022. https://doi.org/10.1007/978-3-030-95470-3
- 977[50]Y.H. Lee, C.P. Wei, T.H. Cheng, C.T. Yang, Nearest-neighbor-based approach to time-978series classification, Decis. Support Syst. (2012). https://doi.org/10.1016/j.dss.2011.12.014.
- G. Lin, A. Lin, J. Cao, Multidimensional KNN algorithm based on EEMD and complexity [51] 979 financial time series forecasting, measures in Expert Syst. Appl. (2021).980 https://doi.org/10.1016/j.eswa.2020.114443. 981
- [52] G.P. Zhang, D.M. Kline, Quarterly time-series forecasting with neural networks, IEEE
 Trans. Neural Networks. (2007). https://doi.org/10.1109/TNN.2007.896859.
- S.F. Crone, M. Hibon, K. Nikolopoulos, Advances in forecasting with neural networks?
 Empirical evidence from the NN3 competition on time series prediction, Int. J. Forecast.
 (2011). https://doi.org/10.1016/j.ijforecast.2011.04.001.
- 987
 [54]
 L. Breiman, Random Forests, Mach. Learn. 45 (2001) 5–32.

 988
 https://doi.org/10.1023/A:1010933404324.
- [55] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Proc. ACM SIGKDD
 Int. Conf. Knowl. Discov. Data Min., 2016. https://doi.org/10.1145/2939672.2939785.

Please cite this paper as:

- J. Luo, Z. Zhang, Y. Fu, F. Rao, Time series prediction of COVID-19 transmission in
 America using LSTM and XGBoost algorithms, Results Phys. (2021).
 https://doi.org/10.1016/j.rinp.2021.104462.
- X. Qiu, L. Zhang, P. Nagaratnam Suganthan, G.A.J. Amaratunga, Oblique random forest
 ensemble via Least Square Estimation for time series forecasting, Inf. Sci. (Ny). (2017).
 https://doi.org/10.1016/j.ins.2017.08.060.
- 997
 [58]
 C. Cortes, V. Vapnik, Support-Vector Networks, Mach. Learn. (1995).

 998
 https://doi.org/10.1023/A:1022627411411.
- J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, M. Anthony, Structural risk minimization
 over data-dependent hierarchies, IEEE Trans. Inf. Theory. (1998).
 https://doi.org/10.1109/18.705570.
- [60] N. Sapankevych, R. Sankar, Time series prediction using support vector machines: A survey, IEEE Comput. Intell. Mag. (2009). https://doi.org/10.1109/MCI.2009.932254.
- 1004[61]M.Z. Naser, · Amir, H. Alavi, A.H. Alavi, · Amir, H. Alavi, Error Metrics and Performance1005Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and1006Sciences, Archit.Struct.Constr.11007https://doi.org/https://doi.org/10.1007/s44150-021-00015-8.
- 1008 [62] D.S.K. Karunasingha, Root mean square error or mean absolute error? Use their ratio as 1009 well, Inf. Sci. (Ny). (2022). https://doi.org/10.1016/j.ins.2021.11.036.
- 1010[63]C. Chen, J. Twycross, J.M. Garibaldi, A new accuracy measure based on bounded relative1011error for time series forecasting, PLoS One. (2017).1012https://doi.org/10.1371/journal.pone.0174202.
- 1013 [64] R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy, Int. J.
 1014 Forecast. (2006). https://doi.org/10.1016/j.ijforecast.2006.03.001.
- 1015 [65] P.H. Franses, A note on the Mean Absolute Scaled Error, Int. J. Forecast. (2016).
 1016 https://doi.org/10.1016/j.ijforecast.2015.03.008.
- R.J. Kate, Using dynamic time warping distances as features for improved time series classification, Data Min. Knowl. Discov. (2016). https://doi.org/10.1007/s10618-015-0418-019
 x.
- [67] U. Khair, H. Fahmi, S. Al Hakim, R. Rahim, Forecasting Error Calculation with Mean
 Absolute Deviation and Mean Absolute Percentage Error, in: J. Phys. Conf. Ser., 2017.
 https://doi.org/10.1088/1742-6596/930/1/012002.
- 1023 [68] J. Brownlee, Airline Passengers, (2017).
- 1024 [69] J. Brownlee, Sunspots, (2017).
- 1025 [70] J. Brownlee, Daily Female Births, (2017).

Please cite this paper as:

- 1026 [71] J. Brownlee, Yearly Water Usage, (2017).
- 1027 [72] J. Brownlee, Daily Minimum Temperatures, (2017).
- 1028 [73] J. Brownlee, Monthly Car Sales, (2017).
- 1029 [74] J. Brownlee, Shampoo Sales Data, (2017).
- 1030 [75] J. Brownlee, Temperature Data, (2017).
- 1031 [76] J. Brownlee, Monthly Writing Paper Sales, (2017).
- 1032 [77] J. Brownlee, Monthly Champagne Sales, (2017).
- 1033 [78] J. Brownlee, Monthly Robberies, (2017).
- 1034 [79] E. Gao, Electric Production, (2018).
- 1035 [80] S. Subikshaa, Web Traffic Dataset, (2019).
- 1036 [81] I. Kim, Stock and PM2.5 Prediction, (2020).
- 1037 [82] M. Jennings, Tata Global Forecasting, (2020).
- 1038 [83] N. Volfango, International Airline Passengers, (2020).
- 1039 [84] J. Brownlee, Pollution Dataset, (2017).
- 1040 [85] ReadyTensor, Daily Stock Prices, (2021).
- 1041 [86] Z. Haoyi, ETT-small, (2020).
- 1042 [87] R. Dey, Jaipur Final Clean Data, (2020).
- 1043 [88] B. Ciranni, Aprocessed, (2021).
- 1044 [89] K. Krishnan, Insurance, (2019).
- 1045 [90] S. Chake, Indian Crime Data Analysis Forecasting, (2020).
- [91] A.E. Ezugwu, A.M. Ikotun, O.O. Oyelade, L. Abualigah, J.O. Agushaka, C.I. Eke, A.A.
 Akinyelu, A comprehensive survey of clustering algorithms: State-of-the-art machine
 learning applications, taxonomy, challenges, and future research prospects, Eng. Appl.
 Artif. Intell. (2022). https://doi.org/10.1016/j.engappai.2022.104743.
- [92] A. Shahraki, A. Taherkordi, O. Haugen, F. Eliassen, A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms, IEEE Trans. Netw.
 Serv. Manag. (2021). https://doi.org/10.1109/TNSM.2020.3035315.
- 1053 [93] Y. Perez-Riverol, J.A. Vizcaíno, J. Griss, Future Prospects of Spectral Clustering 1054 Approaches in Proteomics, Proteomics. (2018). https://doi.org/10.1002/pmic.201700454.
- 1055 [94] W. Xiao, J. Hu, A Survey of Parallel Clustering Algorithms Based on Spark, Sci. Program.

Please cite this paper as:

1056	(2020). https://doi.org/10.1155/2020/8884926.
1057	
1058	
1059	
1060	
1061	
1062	
1063	
1064	
1065	
1066	
1067	
1068	
1069	
1070	
1071	
1072	
1073	
1074	
1075	
1076	
1077	
1078	
1079	
1080	
1081	
1082	

Please cite this paper as:

Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors exploration for time series and forecasting problems. *Computers & Industrial Engineering*. <u>https://doi.org/10.1016/j.cie.2024.110812</u>.

1083 Appendix

- 1084 The complete class of SPINEX is shown below. SPINEX can be installed via: pip install
- 1085 spinex timeseries

```
@jit(nopython=True)
1086
1087
        def numba_dtw(x, y):
           n, m = len(x), len(y)
1088
           dtw_matrix = np.zeros((n+1, m+1))
1089
1090
           for i in range(1, n+1):
             for j in range(1, m+1):
1091
1092
               cost = abs(x[i-1] - y[j-1])
1093
               dtw matrix[i, j] = cost + min(dtw matrix[i-1, j], dtw matrix[i, j-1], dtw matrix[i-1, j-1])
           return dtw matrix[n, m]
1094
1095
1096
        @jit(nopython=True)
1097
        def numba_dtw_similarity(X):
1098
           n = X.shape[0]
           sim matrix = np.zeros((n, n))
1099
1100
           for i in range(n):
             for j in range(i, n):
1101
1102
               dist = numba_dtw(X[i], X[j])
1103
               sim matrix[i, j] = sim matrix[j, i] = 1/(1 + \text{dist})
1104
           return sim matrix
1105
1106
         @jit(nopython=True)
        def numba_sample_entropy(x, m=2, r=0.2):
1107
1108
           n = len(x)
           B = 0.0
1109
1110
           A = 0.0
           for i in range(n - m):
1111
1112
             for j in range(i + 1, n - m):
               matches = 0
1113
1114
               for k in range(m):
1115
                 if abs(x[i+k] - x[j+k]) \le r:
1116
                    matches += 1
1117
                 else:
1118
                   break
               if matches == m:
1119
                 B += 1
1120
                 if abs(x[i+m] - x[j+m]) \leq r:
1121
1122
                   A += 1
           return -np.log((A + 1e-10) / (B + 1e-10))
1123
1124
1125
        def direction_accuracy(segment1, segment2):
           direction1 = np.sign(np.diff(segment1))
1126
```

Please cite this paper as:

1127	direction2 = np.sign(np.diff(segment2))
1128	return np.mean(direction1 == direction2)
1129	
1130	class SPINEX_Timeseries:
1131	definit(self, data, window_size=None, forecast_horizon=1, similarity_methods=None,
1132	dynamic_window=True,
1133	self.data = np.array(data)
1134	if window_size is None:
1135	self.window_size = max(10, len(data) // 10)
1136	else:
1137	self.window_size = min(window_size, len(data) // 2)
1138	self.forecast_horizon = min(forecast_horizon, len(data) // 10)
1139	self.forecast_horizon = forecast_horizon
1140	self.similarity_methods = similarity_methods if similarity_methods else ['cosine', 'euclidean', 'dtw']
1141	self.similarity_cache = {}
1142	self.dynamic_window = dynamic_window
1143	self.multi_level = multi_level
1144	self.dynamic_threshold = dynamic_threshold
1145	self.segments_cache = {}
1146	self.recent_errors = []
1147	self.recent_similarity_scores = []
1148	if self.dynamic_window:
1149	self.window_size = self.adaptive_window_size()
1150	
1151	@staticmethod
1152	def hash_array(arr):
1153	return hashlib.md5(arr.data.tobytes()).hexdigest()
1154	
1155	@lru_cache(maxsize=128)
1156	def get_similarity_matrix(self, method, segments_hash):
1157	if (segments_hash, method) in self.similarity_cache:
1158	return self.similarity_cache[(segments_hash, method)]
1159	segments = self.segments_cache[segments_hash]
1160	if method == 'cosine':
1161	similarity_matrix = self.cosine_similarity(segments)
1162	elif method == 'correlation':
1163	similarity_matrix = self.correlation_similarity(segments)
1164	elif method == 'euclidean':
1165	similarity_matrix = self.euclidean_similarity(segments)
1166	elif method == 'spearman':
1167	similarity_matrix = self.spearman_similarity(segments)
1168	elif method == 'dtw':
1169	similarity_matrix = numba_dtw_similarity(segments)
1170	elif method == 'direction':
1171	similarity matrix = self.direction similarity(segments)

Please cite this paper as: Naser A., Naser M.Z. (2025). SPINEX-TimeSeries: Similarity-based predictions with explainable neighbors Industrial exploration for time series and forecasting problems. *Computers* æ Engineering. https://doi.org/10.1016/j.cie.2024.110812. 1172 else: raise ValueError(f"Invalid similarity method: {method}") 1173 self.similarity cache[(segments hash, method)] = similarity matrix 1174 return similarity_matrix 1175 1176 1177 @staticmethod def cosine similarity(X): 1178 norm = np.linalg.norm(X, axis=1) 1179 return np.dot(X, X.T) / np.outer(norm, norm) 1180 1181 @staticmethod 1182 def correlation_similarity(X): 1183 1184 return np.corrcoef(X) 1185 @staticmethod 1186 def euclidean_similarity(X): 1187 sq dists = cdist(X, X, metric='euclidean')**2 1188 return 1 / (1 + np.sqrt(sq dists)) 1189 1190 @staticmethod 1191 1192 def spearman_similarity(X): return spearmanr(X.T)[0] 1193 1194 def adjust_dynamic_parameters(self): 1195 1196 MIN WINDOW SIZE = 10 MAX WINDOW SIZE = len(self.data) // 2 1197 1198 BASELINE WINDOW SIZE = max(MIN WINDOW SIZE, len(self.data) // 10) if len(self.data) > BASELINE WINDOW SIZE: 1199 1200 volatility = np.std(self.data[-BASELINE_WINDOW_SIZE:]) 1201 else: 1202 volatility = np.std(self.data) scale factor = np.clip(volatility, 0.1, 1.0) # Limiting scale factor to avoid extreme values 1203 1204 self.window size = int(MAX WINDOW SIZE / scale factor) 1205 self.window size = max(MIN WINDOW SIZE, min(self.window size, MAX WINDOW SIZE)) if hasattr(self, 'recent errors'): 1206 1207 recent_error_mean = np.mean(self.recent_errors) recent error std = np.std(self.recent errors) 1208 threshold_adjustment = recent_error_mean + recent_error_std 1209 1210 else: 1211 threshold adjustment = 0 1212 if hasattr(self, 'recent_similarity_scores') and self.recent_similarity_scores: mean sim = np.mean(self.recent similarity scores) 1213 std_sim = np.std(self.recent_similarity_scores) 1214 self.threshold = mean_sim + std_sim + threshold_adjustment 1215 1216 else:

Please cite this paper as:

1217	self.threshold = 0.5 # Default threshold if no recent similarities are recorded
1218	print(f"Adjusted Window Size: {self.window_size}, Threshold: {self.threshold}")
1219	
1220	def get_dynamic_threshold(self, similarities):
1221	if self.dynamic_threshold:
1222	mean_sim = np.mean(similarities)
1223	std_sim = np.std(similarities)
1224	base_threshold = mean_sim + std_sim
1225	if len(similarities[similarities > base_threshold]) < 5:
1226	# If less than 5 indices are above threshold, reduce it to include more indices
1227	adjusted_threshold = np.percentile(similarities, 90) # Adjusting percentile upward
1228	else:
1229	adjusted_threshold = base_threshold
1230	print(f"Dynamic Threshold Adjusted: {adjusted_threshold}")
1231	return adjusted_threshold
1232	else:
1233	return np.percentile(similarities, 95)
1234	
1235	def adjusted_dtw_similarity(self, X):
1236	dtw_scores = numba_dtw_similarity(X)
1237	adjusted_scores = 1 / (1 + np.sqrt(dtw_scores)) # Squaring DTW scores for more lenience
1238	return adjusted_scores
1239	
1240	def plot_prediction(self):
1241	predicted_values = self.predict()
1242	if predicted_values.size > 0:
1243	prediction_start_index = len(self.data) - self.forecast_horizon
1244	plt.figure(figsize=(12, 6))
1245	plt.plot(self.data, label='Actual Time Series', color='blue')
1246	<pre>plt.plot(np.arange(prediction_start_index, len(self.data)),</pre>
1247	self.data[prediction_start_index:], label='Actual (Prediction Window)', color='green')
1248	<pre>plt.plot(np.arange(prediction_start_index, len(self.data)),</pre>
1249	predicted_values, label='Predicted', color='red', linestyle='')
1250	plt.title('Time Series Prediction Comparison')
1251	plt.xlabel('Time Index')
1252	plt.ylabel('Values')
1253	plt.legend()
1254	plt.show()
1255	else:
1256	print("No valid predictions could be made.")
1257	
1258	@lru_cache(maxsize=32)
1259	def extract_segments(self, window_size=None):
1260	if window_size is None:
1261	window_size = self.adaptive_window_size()

Please cite this paper as:

1262	data_length = len(self.data)
1263	if data_length < window_size:
1264	print(f"Data length ({data_length}) is less than window size ({window_size}). Adjusting window size.")
1265	window_size = data_length // 2 # Use half of data length as window size
1266	n = data_length - window_size + 1
1267	if n <= 1:
1268	return np.array([self.data[-window_size:]])
1269	segments = np.lib.stride_tricks.sliding_window_view(self.data, window_size)
1270	segment_means = np.mean(segments, axis=1)
1271	segment_stds = np.std(segments, axis=1)
1272	normalized_segments = (segments - segment_means[:, np.newaxis]) / (segment_stds[:, np.newaxis] + 1e-8)
1273	return normalized_segments
1274	def find_similar_segments(self):
1275	window_sizes = [self.window_size]
1276	if self.multi_level:
1277	window_sizes = [max(2, self.window_size // 2)] + window_sizes + [min(len(self.data) // 4, self.window_size *
1278	2)]
1279	all_similarities = []
1280	for w_size in window_sizes:
1281	segments = self.extract_segments(w_size)
1282	if len(segments) < 2:
1283	print(f"Not enough segments for window size {w_size}, skipping.")
1284	continue
1285	segments_hash = self.hash_array(segments)
1286	self.segments_cache[segments_hash] = segments
1287	method_similarities = []
1288	for method in self.similarity_methods:
1289	if method == 'dtw' and len(segments) > 500:
1290	print(f"DTW skipped for large dataset with {len(segments)} segments.")
1291	continue
1292	try:
1293	sim_matrix = self.get_similarity_matrix(method, segments_hash)
1294	if sim_matrix.ndim > 1:
1295	method_similarities.append(sim_matrix[-1, :-1])
1296	else:
1297	method_similarities.append(sim_matrix[:-1])
1298	except Exception as e:
1299	print(f"Error calculating similarity for method {method}: {str(e)}")
1300	if not method_similarities:
1301	print(f"No valid similarity methods for window size {w_size}, skipping.")
1302	continue
1303	min_length = min(len(sim) for sim in method_similarities)
1304	method_similarities = [sim[-min_length:] for sim in method_similarities]
1305	method_similarities_array = np.array(method_similarities)
1306	overall_similarity = np.nanmean(method_similarities_array, axis=0)

Please cite this paper as:

1307	all_similarities.append(overall_similarity)
1308	if not all_similarities:
1309	print("No similarities found for any window size. Using fallback similarity.")
1310	return self.fallback_similarity_method()
1311	min_length = min(len(s) for s in all_similarities)
1312	all_similarities = [s[-min_length:] for s in all_similarities]
1313	all_similarities_array = np.array(all_similarities)
1314	combined_similarities = np.nanmean(all_similarities_array, axis=0)
1315	return combined_similarities
1316	
1317	def fallback_similarity_method(self):
1318	# Simple autocorrelation-based similarity
1319	acf = np.correlate(self.data, self.data, mode='full')[len(self.data)-1:]
1320	return acf / acf[0] # Normalize
1321	
1322	def analyze_segment_similarity(self, segment_index):
1323	current_segment = self.extract_segments(self.window_size)[-1]
1324	historical_segment = self.extract_segments(self.window_size)[segment_index]
1325	similarity_scores = {}
1326	for method in self.similarity_methods:
1327	if method == 'cosine':
1328	<pre>score = np.dot(current_segment, historical_segment) / (np.linalg.norm(current_segment) *</pre>
1329	np.linalg.norm(historical_segment))
1330	elif method == 'euclidean':
1331	<pre>score = 1 / (1 + np.linalg.norm(current_segment - historical_segment))</pre>
1332	elif method == 'dtw':
1333	score = 1 / (1 + numba_dtw(current_segment, historical_segment)) # Use the global function
1334	similarity_scores[method] = score
1335	feature_contributions = np.abs(current_segment - historical_segment)
1336	top_contributing_features = np.argsort(feature_contributions)[::-1][:5]
1337	return {
1338	'similarity_scores': similarity_scores,
1339	top_contributing_teatures': top_contributing_teatures.tolist(),
1340	Teature_contributions : feature_contributions.tolist()
1341	}
1342	defeat respect which have $(a) f (- f)$
1343	cimilarities - solf find, similar, sogments()
1344	similarities = self.imu_similar_segments()
1345	redrest_indices = rip.argsofi(sinilarities)[::-1][:K]
1340	
134/	dof dtw. similarity/solf. X):
134ð 1340	return numbardtw. similarity(X) # Use the global function
1350	
1350	def adaptive window size(self):
1001	

Please cite this paper as:

1352	data_length = len(self.data)
1353	if data_length < 100:
1354	base_window = max(2, data_length // 20)
1355	elif data_length < 1000:
1356	base_window = max(5, data_length // 40)
1357	else:
1358	base_window = max(25, data_length // 80)
1359	potential_seasons = self.detect_seasonality()
1360	variability = np.std(self.data) / (np.mean(self.data) + 1e-8)
1361	if potential_seasons:
1362	window = min(max(potential_seasons),
1363	else:
1364	window = int(base_window * (1 + variability))
1365	return max(2, min(window, data_length // 8)) # Ensure window is at most 1/8 of data length
1366	
1367	def detect_seasonality(self, max_lag=None):
1368	if max_lag is None:
1369	max_lag = len(self.data) // 2
1370	acf = np.correlate(self.data, self.data, mode='full')[-max_lag:]
1371	peaks = np.where((acf[1:-1] > acf[:-2]) & (acf[1:-1] > acf[2:]))[0] + 1
1372	if len(peaks) > 0:
1373	return [int(peaks[0])] # Return a list with the first peak
1374	return [] # Return an empty list if no peaks found
1375	def detect_anomalies(self, threshold_percentile=2):
1376	<pre>segments = self.extract_segments(self.window_size)</pre>
1377	similarities = self.find_similar_segments()
1378	threshold = np.percentile(similarities, threshold_percentile)
1379	anomaly_indices = np.where(similarities < threshold)[0]
1380	anomalies = []
1381	for idx in anomaly_indices:
1382	start = idx
1383	end = idx + self.window_size
1384	anomalies.append({
1385	'start_index': start,
1386	'end_index': end,
1387	'segment': self.data[start:end].tolist(),
1388	'similarity_score': similarities[idx]
1389	})
1390	return anomalies, threshold
1391	
1392	def plot_anomalies(self, threshold_percentile=5):
1393	anomalies, threshold = self.detect_anomalies(threshold_percentile)
1394	plt.figure(figsize=(12, 6))
1395	plt.plot(self.data, label='Time Series', color='blue')
1396	for anomaly in anomalies:

Please cite this paper as:

1397	plt.axvspan(anomaly['start_index'],anomaly['end_index'],color='red', alpha=0.3)
1398	plt.title(f'Time Series with Detected Anomalies (Threshold: {threshold:.4f})')
1399	plt.xlabel('Time Index')
1400	plt.ylabel('Values')
1401	plt.legend()
1402	if not anomalies:
1403	plt.text(0.5, 0.5, 'No anomalies detected', horizontalalignment='center',
1404	verticalalignment='center', transform=plt.gca().transAxes)
1405	else:
1406	print(f"Detected {len(anomalies)} anomalies")
1407	plt.show()
1408	
1409	similarities = self.find similar segments()
1410	print(f"Similarity score range: {similarities.min():.4f} to {similarities.max():.4f}")
1411	print(f"Similarity score mean: {similarities.mean():.4f}")
1412	print(f"Similarity score median: {np.median(similarities):.4f}")
1413	print(f"Anomaly threshold: {threshold:.4f}")
1414	
1415	def calculate mean squared error(self, actual, predicted):
1416	return np.mean((actual - predicted) ** 2)
1417	
1418	def calculate_basic_similarity(self, actual, predicted):
1419	# Ensuring that neither actual nor predicted are empty to avoid runtime errors
1420	if actual.size == 0 or predicted.size == 0:
1421	return np.nan
1422	correlation = np.corrcoef(actual, predicted)[0, 1]
1423	return correlation
1424	
1425	def fallback_prediction(self, num_points):
1426	if len(self.data) < num_points * 2:
1427	raise ValueError("Insufficient data for prediction")
1428	def adaptive_window(data):
1429	def mse(window):
1430	trend = extract_trend(data, int(window))
1431	return np.mean((data[int(window)-1:] - trend)**2)
1432	result = minimize_scalar(mse, bounds=(10, len(data)//2), method='bounded')
1433	return int(result.x)
1434	
1435	def extract_trend(data, window_size):
1436	return np.convolve(data, np.ones(window_size), 'valid') / window_size
1437	
1438	def detect_seasonalities(data, max_period, num_seasons=2):
1439	correlations = [np.corrcoef(data[:-i], data[i:])[0, 1] for i in range(1, max_period)]
1440	seasons = []
1441	for in range(num seasons):

Please cite this paper as:

1442	if len(correlations) > 0:
1443	season = np.argmax(correlations) + 1
1444	seasons.append(season)
1445	correlations[season-1] = -1 # Remove detected season
1446	return seasons
1447	
1448	def model_nonlinear_trend(data, x):
1449	coeffs = np.polyfit(x, data, 3)
1450	return np.poly1d(coeffs)
1451	
1452	def detect_anomalies(data, threshold=3):
1453	mean = np.mean(data)
1454	std = np.std(data)
1455	return np.abs(data - mean) > threshold * std
1456	window_size = adaptive_window(self.data)
1457	trend = extract_trend(self.data, window_size)
1458	detrended = self.data[window_size-1:] - trend
1459	seasonality_periods = detect_seasonalities(detrended, num_points)
1460	seasonals = []
1461	for period in seasonality_periods:
1462	seasonal = np.zeros(period)
1463	for i in range(period):
1464	seasonal[i] = np.mean(detrended[i::period])
1465	seasonals.append(seasonal)
1466	combined_seasonal = np.zeros_like(detrended)
1467	for seasonal in seasonals:
1468	combined_seasonal += np.tile(seasonal, len(detrended) // len(seasonal) + 1)[:len(detrended)]
1469	residuals = detrended - combined_seasonal[:len(detrended)]
1470	anomalies = detect_anomalies(residuals)
1471	cleaned_residuals = residuals.copy()
1472	cleaned_residuals[anomalies] = np.median(residuals)
1473	x = np.arange(len(self.data))
1474	trend_model = model_nonlinear_trend(self.data, x)
1475	future_x = np.arange(len(self.data), len(self.data) + self.forecast_horizon)
1476	future_trend = trend_model(future_x)
1477	future_seasonal = np.zeros(self.forecast_horizon)
1478	for seasonal in seasonals:
1479	future_seasonal += np.tile(seasonal, self.forecast_horizon // len(seasonal) + 1)[:self.forecast_horizon]
1480	
1481	def predict_residuals_with_ci(residuals, horizon, confidence=0.95):
1482	weights = np.exp(np.linspace(-1, 0, len(residuals)))
1483	weighted_mean = np.sum(residuals * weights) / np.sum(weights)
1484	weighted_std = np.sqrt(np.sum(weights * (residuals - weighted_mean)**2) / np.sum(weights))
1485	predictions = np.random.normal(weighted_mean, weighted_std, (1000, horizon))
1486	mean_prediction = np.mean(predictions, axis=0)

Please cite this paper as:

1487	ci_lower = np.percentile(predictions, (1 - confidence) / 2 * 100, axis=0)
1488	ci_upper = np.percentile(predictions, (1 + confidence) / 2 * 100, axis=0)
1489	return mean_prediction, ci_lower, ci_upper
1490	future_residuals, ci_lower, ci_upper = predict_residuals_with_ci(cleaned_residuals, self.forecast_horizon)
1491	predictions = future_trend + future_seasonal + future_residuals
1492	ci_lower += future_trend + future_seasonal
1493	ci_upper += future_trend + future_seasonal
1494	return predictions, ci_lower, ci_upper
1495	
1496	def tune_hyperparameters(self):
1497	# Example: tune the number of seasonalities to detect
1498	best_num_seasons = 1
1499	best_mse = float('inf')
1500	for num_seasons in range(1, 5):
1501	predictions, _, _ = self.fallback_prediction(num_points=20)
1502	mse = np.mean((self.data[-len(predictions):] - predictions)**2)
1503	if mse < best_mse:
1504	best_mse = mse
1505	best_num_seasons = num_seasons
1506	return {'num_seasons': best_num_seasons}
1507	
1508	def predict(self):
1509	self.adjust_dynamic_parameters()
1510	try:
1511	similarities = self.find_similar_segments()
1512	if len(similarities) == 0:
1513	print("No similarities found. Using fallback prediction.")
1514	return self.fallback_prediction(self.forecast_horizon)[0]
1515	threshold = self.get_dynamic_threshold(similarities)
1516	valid_indices = []
1517	for percentile in range(95, 70, -5): # Start at 95th percentile, go down to 70th
1518	top_indices = np.where(similarities > np.percentile(similarities, percentile))[0]
1519	valid_indices = top_indices[top_indices + self.window_size + self.forecast_horizon <= len(self.data)]
1520	if len(valid_indices) >= 3:
1521	break
1522	if len(valid_indices) == 0:
1523	print("No valid indices found. Using fallback prediction.")
1524	return self.fallback_prediction(self.forecast_horizon)[0]
1525	predictions = []
1526	weights = []
1527	for idx in valid_indices:
1528	start = idx + self.window_size
1529	end = start + self.forecast_horizon
1530	if end <= len(self.data):
1531	segment = self.data[start:end]

Please cite this paper as:

1532	predictions.append(segment)
1533	weights.append(similarities[idx])
1534	if predictions:
1535	min_length = min(len(p) for p in predictions)
1536	predictions = [p[:min_length] for p in predictions]
1537	predictions = np.array(predictions)
1538	weights = np.array(weights)
1539	last_actual = self.data[-1]
1540	for i in range(len(predictions)):
1541	shift = last_actual - predictions[i][0]
1542	predictions[i] += shift
1543	predicted_values = np.average(predictions, axis=0, weights=weights)
1544	else:
1545	print("No valid predictions. Using fallback prediction.")
1546	predicted_values = self.fallback_prediction(self.forecast_horizon)[0]
1547	except Exception as e:
1548	print(f"Error in predict: {str(e)}")
1549	predicted_values = self.fallback_prediction(self.forecast_horizon)[0] # Return only predictions, not CI
1550	if predicted_values.size > 0:
1551	actual_values = self.data[-len(predicted_values):]
1552	prediction_error = self.calculate_mean_squared_error(actual_values, predicted_values)
1553	recent_similarity_score = self.calculate_basic_similarity(actual_values, predicted_values)
1554	self.update_recent_performance(prediction_error, recent_similarity_score)
1555	else:
1556	self.update_recent_performance(np.nan, np.nan)
1557	return predicted_values
1558	
1559	def update_recent_performance(self, new_error, new_similarity_score):
1560	self.recent_errors.append(new_error)
1561	self.recent_similarity_scores.append(new_similarity_score)
1562	# Optionally, trim these lists to avoid unlimited growth
1563	self.recent_errors = self.recent_errors[-100:] # Keep the last 100 records
1564	self.recent_similarity_scores = self.recent_similarity_scores[-100:]
1565	
1566	def evaluate_prediction(self, actual, predicted):
1567	if len(actual) != len(predicted):
1568	raise ValueError("Actual and predicted arrays must have the same length.")
1569	if len(actual) == 0:
1570	return {metric: np.nan for metric in ['MSE', 'MAE', 'RMSE', 'MAPE', 'SMAPE', 'R-squared', 'Direction Accuracy',
1571	'Theil\'s U']}
1572	mse = np.mean((actual - predicted) ** 2)
1573	mae = np.mean(np.abs(actual - predicted))
1574	rmse = np.sqrt(mse)
1575	mape = np.mean(np.abs((actual - predicted) / (actual + 1e-8))) * 100
1576	smape = np.mean(2 * np.abs(predicted - actual) / (np.abs(actual) + np.abs(predicted) + 1e-8)) * 100

Please cite this paper as:

1577	r2 = r2_score(actual, predicted)
1578	direction_actual = np.sign(np.diff(actual))
1579	direction_pred = np.sign(np.diff(predicted))
1580	direction_accuracy = np.mean(direction_actual == direction_pred) * 100
1581	actual_changes = np.diff(actual)
1582	predicted_changes = np.diff(predicted)
1583	theil_u = np.sqrt(np.sum(predicted_changes**2) / np.sum(actual_changes**2)) if np.sum(actual_changes**2) !=
1584	0 else np.nan
1585	return {
1586	'MSE': mse, 'MAE': mae, 'RMSE': rmse, 'MAPE': mape, 'SMAPE': smape,
1587	'R-squared': r2, 'Direction Accuracy': direction_accuracy, 'Theil\'s U': theil_u
1588	}
1589	
1590	def validate_prediction(self, splits=3):
1591	n_samples = len(self.data)
1592	max_splits = (n_samples - self.window_size) // self.forecast_horizon
1593	splits = min(splits, max_splits)
1594	if splits < 2:
1595	print("Warning: Not enough data for multiple splits. Performing single train-test split.")
1596	train_size = int(0.8 * n_samples)
1597	train, test = self.data[:train_size], self.data[train_size:]
1598	self.data = train
1599	self.similarity_cache = {}
1600	predicted = self.predict()
1601	if predicted.size > 0:
1602	actual = test[:len(predicted)]
1603	metrics = self.evaluate_prediction(actual, predicted)
1604	self.data = np.concatenate((train, test)) # Restore original data
1605	return metrics
1606	else:
1607	print("Insufficient data to make a prediction.")
1608	return None
1609	tscv = TimeSeriesSplit(n_splits=splits, test_size=self.forecast_horizon)
1610	errors = []
1611	for train_index, test_index in tscv.split(self.data):
1612	if len(train_index) < self.window_size:
1613	print(f"Warning: Train set too small for window size. Skipping split.")
1614	continue
1615	train, test = self.data[train_index], self.data[test_index]
1616	original_data = self.data
1617	self.data = train
1618	self.similarity_cache = {}
1619	predicted = self.predict()
1620	if predicted.size > 0:
1621	actual = test[:len(predicted)]

Please cite this paper as:

1622	metrics = self.evaluate_prediction(actual, predicted)
1623	errors.append(metrics)
1624	else:
1625	print("Insufficient data to predict for this split.")
1626	self.data = original_data
1627	if errors:
1628	avg_metrics = {metric: np.mean([e[metric] for e in errors if metric in e]) for metric in errors[0]}
1629	return avg_metrics
1630	else:
1631	print("No valid predictions could be made across splits.")
1632	return None
1633	
1634	def get_explainability_results(self, top_k=5):
1635	similarities = self.find_similar_segments()
1636	threshold = self.get_dynamic_threshold(similarities)
1637	top_indices = np.where(similarities > threshold)[0]
1638	if len(top_indices) == 0:
1639	top_indices = np.argsort(similarities)[-top_k:]
1640	results = {
1641	'top_similar_segments': top_indices.tolist(),
1642	'similarity_scores': similarities[top_indices].tolist(),
1643	'threshold': threshold,
1644	'segment_contributions': []
1645	}
1646	predictions = []
1647	valid_indices = []
1648	for idx in top_indices:
1649	start = idx + self.window_size
1650	if start + self.forecast_horizon <= len(self.data):
1651	predictions.append(self.data[start:start + self.forecast_horizon])
1652	valid_indices.append(idx)
1653	if not predictions:
1654	return results
1655	predictions = np.array(predictions)
1656	weights = similarities[valid_indices]
1657	weighted_predictions = predictions * weights[:, np.newaxis]
1658	for i, (index, score, prediction, contribution) in enumerate(zip(valid_indices, similarities[valid_indices],
1659	predictions, weighted_predictions)):
1660	results['segment_contributions'].append({
1661	'segment_index': int(index),
1662	'similarity_score': float(score),
1663	'prediction': prediction.tolist(),
1664	'weighted_contribution': contribution.tolist(),
1665	'contribution_percentage': (contribution / np.sum(weighted_predictions, axis=0) * 100).tolist()
1666	})

Please cite this paper as:

1667	return results
1668	
1669	def plot_nearest_neighbors(self, k=5):
1670	current_segment = self.extract_segments(self.window_size)[-1]
1671	neighbors = self.get_nearest_neighbors(k)
1672	plt.figure(figsize=(15, 10))
1673	plt.subplot(k+1, 1, 1)
1674	plt.plot(current_segment, color='blue', label='Current Segment')
1675	plt.title('Current Segment')
1676	plt.legend()
1677	for i, (idx, similarity) in enumerate(neighbors, start=2):
1678	<pre>neighbor_segment = self.extract_segments(self.window_size)[idx]</pre>
1679	plt.subplot(k+1, 1, i)
1680	plt.plot(neighbor_segment, color='red', label=f'Neighbor {i-1}')
1681	<pre>plt.title(f'Neighbor {i-1} (Similarity: {similarity:.4f})')</pre>
1682	plt.legend()
1683	plt.tight_layout()
1684	plt.show()
1685	
1686	def analyze_and_plot_neighbors(self, k=5):
1687	current_segment = self.extract_segments(self.window_size)[-1]
1688	neighbors = self.get_nearest_neighbors(k)
1689	plt.figure(figsize=(20, 5*k))
1690	plt.subplot(k+1, 2, 1)
1691	plt.plot(current_segment, color='blue', label='Current Segment')
1692	plt.title('Current Segment')
1693	plt.legend()
1694	for i, (idx, overall_similarity) in enumerate(neighbors, start=1):
1695	neighbor_segment = self.extract_segments(self.window_size)[idx]
1696	analysis = self.analyze_segment_similarity(idx)
1697	plt.subplot(k+1, 2, 2*i+1)
1698	plt.plot(neighbor_segment, color='red', label=f'Neighbor {i}')
1699	plt.title(f'Neighbor {i} (Overall Similarity: {overall_similarity:.4f})')
1700	plt.legend()
1701	plt.subplot(k+1, 2, 2*i+2)
1702	methods = list(analysis['similarity_scores'].keys())
1703	scores = list(analysis['similarity_scores'].values())
1704	plt.bar(methods, scores)
1705	plt.title(f'Similarity Scores for Neighbor {i}')
1706	plt.ylim(0, 1)
1707	print(f"\nNeighbor {i} Analysis:")
1708	print(t"Overall Similarity: {overall_similarity:.4f}")
1709	print("Similarity Scores:")
1710	for method, score in analysis['similarity_scores'].items():
1711	print(f" {method}: {score:.4f}")

Please cite this paper as:

- 1712 print("Top Contributing Features:", analysis['top_contributing_features'])
- 1713 plt.tight_layout()
- 1714 plt.show()
- 1715