WOODHEAD PUBLISHING SERIES IN CIVIL AND STRUCTURAL ENGINEERING

CONSTRUCTION MATERIALS AND THEIR PROPERTIES FOR FIRE RESISTANCE AND INSULATION

Edited by PAUL O. AWOYERA M.Z. NASER

Construction Materials and Their Properties for Fire Resistance and Insulation

Woodhead Publishing Series in Civil and Structural Engineering

Construction Materials and Their Properties for Fire Resistance and Insulation

Edited by

Paul O. Awoyera **Department of Civil Engineering, Prince** Mohammad bin Fahd University, Khobar, Dhahran, Saudi Arabia

M.Z. Naser

School of Civil and Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC. United States

Woodhead Publishing is an imprint of Elsevier 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States 125 London Wall, London EC2Y 5AS, United Kingdom

Copyright © 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

Publisher's note: Elsevier takes a neutral position with respect to territorial disputes or jurisdictional claims in its published content, including in maps and institutional affiliations.

For accessibility purposes, images in this book are accompanied by alt text descriptions provided by Elsevier.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-443-21620-6 (print) ISBN: 978-0-443-21621-3 (online)

For information on all Woodhead publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Chiara Giglio Editorial Project Manager: John Leonard Production Project Manager: Anitha Sivaraj Cover Designer: Greg Harris

Typeset by STRAIVE, India

Working together to grow libraries in developing countries

www.elsevier.com • www.bookaid.org

Contents

Co Pro	Contributors Preface		
Se	ction	A Fire protection and materials' performance	1
1	The	rmal properties of sprayed fire-resistant materials	3
	Serc	lar Selamet	-
	1.1	Introduction	3
	1.2	Furnace tests	4
	1.5	SFRM conductivity estimation	0
	1.4	Results	9
	1.5	conclusions	11
	App	nowledgment	12
	Refe	prences	17
2	Ten phy <i>Eler</i> 2.1 2.2 2.3 2.4	nperature variation of gypsum and gypsum plasterboard sical properties in Asimakopoulou and Dionysios Kolaitis Introduction High temperature effects on gypsum-based construction products Temperature-dependent thermophysical properties of GP Numerical models for GP assemblies exposed to fire	19 19 21 25 33
	2.5	Fire behavior of PCM-enhanced gypsum plasterboards	36
	Refe	prences	38
3	Thermo-mechanical properties of timber structures		
	Erica C. Fischer		
	3.1	Introduction	41
	3.2	Elevated temperature thermo-mechanical properties of timber:	
		State of the art	42
	3.3	Applicability of relevant properties	48
	3.4	Conclusions	54
	References		

4	Properties of cold-formed steels exposed to elevated temperatures 5				
	Chenzhi Ma, Xia Yan, and Thomas Gernay				
	4.1 Overview	59			
	4.2 Terminology and test method	60			
	4.3 Data on conventional CFS at elevated temperature	62			
	4.4 Data on cold-formed AHSS	64			
	4.5 Material models	72			
	4.6 Conclusion	74			
	References	76			
5	Fire behavior of combustible cladding materials, including				
	composite timber				
	Tom Cotton, Jack Trevaskis, Ashley Hunt, and Kate Thuy Quynh Nguyen				
	5.1 Combustible claddings	79			
	5.2 Critical flame behaviors	83			
	5.3 Discussion	88			
	5.4 Concluding remarks	94			
	References	94			
6	Strength recovery by postfire curing				
	Seyed Sina Mousavi, Seyed Soheil Mousavi Ajarostaghi,				
	and Mehdi Dehestani				
	6.1 Postfire recuring	97			
	6.2 Mechanical and microstructural tests	104			
	6.3 Compressive strength recovery	105			
	6.4 Tensile strength recovery	107			
	6.5 Flexural strength recovery	110			
	6.6 Elastic modulus recovery	111			
	6.7 Bond strength recovery	113			
	6.8 Microstructural analysis of healed specimens	114			
	6.9 Conclusions and prospects	120			
	References	121			
Se	ction B Concrete: Behavior under fire exposure	125			
7	Fire response of 3D printed concrete	127			
	Seyed Sina Mousavi, Khatereh Ahmadi, and Mehdi Dehestani				
	7.1 Concrete 3D printing	127			
	7.2 Compressive strength test	130			
	7.3 Splitting tensile strength test	137			
	7.4 Flexural strength test	138			
	7.5 Elastic modulus test	141			
	7.6 Mass loss after fire	142			
	7.7 Damage pattern after high-temperature exposure	144			

	7.8	Conclusions and prospects	146	
	Refe	rences	146	
8	Resistance of zero-cement concrete to fire			
	Zhijian Chen and Hailong Ye			
	8.1	Introduction	149	
	8.2	Damage mechanisms of ordinary Portland cement at elevated temperatures	149	
	8.3	Alkali-activated material concrete	150	
	8.4	Calcium aluminate cement concrete	154	
	8.5	Magnesium phosphate cement concrete	158	
	8.6	Calcium sulfoaluminate cement	160	
	8.7	Conclusions	161	
	References			
9	Evaluation of residual properties and recovery of fire-damaged concrete with repeatedly recycled fine aggregates			
	Hyeonsoo Jung, Jeonghyun Kim, Hongseok Yang, and Namho Kim			
	9.1	Introduction	165	
	9.2	Materials and methods	166	
	9.3	Results and discussion	169	
	9.4	Conclusions	175	
	Refe	rences	176	
10	The influences of cooling regimes on fire-damaged			
	Veas	ng Ati Noth Thomas W. Loh, and Kate Thuy Ownh Nauven	177	
	10.1	Conventional and novel concretes	179	
	10.2	Fire susceptibility of concrete structures	180	
	10.3	Cooling of fire-damaged concretes	181	
	10.4	Influences of cooling regimes on fire-damaged concretes	181	
	10.5	Concluding remarks	192	
	Refe	rences	193	
11	Strain development in reactive powder concrete under			
	coupled thermo-mechanical loading			
	Muhammad Abid and Jize Mao			
	11.1	Introduction	199	
	11.2	Short-term creep development under high temperature	201	
	11.3	Significance of high-temperature short-term creep	212	
	11.4	Free thermal strain of RPC at high temperature	214	
	11.5	Transient strain of RPC at high temperature	218	
	11.6	Chapter summary	225	
	References			

12	Microstructure characterization of reactive powder		
	concrete after exposure to fire		229
	Muhammad Abid and Shayan Zeb		
	12.1	Introduction	229
	12.2	TG and DSC analysis	230
	12.3	Mercury intrusion porosity	231
	12.4	XRD patterns	233
	12.5	SEM and EDS analysis	233
	12.6	Chapter summary	239
	References		239
13	Kena	f fiber-reinforced concrete at high temperature	241
	Mari	yana Aida Ab Kadir, Oluwatobi Gbenga Aluko, and	
	Jama	luddin Mohamad Yatim	
	13.1	Introduction	241
	13.2	Background: Biofibrous concrete characteristics	244
	13.3	Hardened concrete test	251
	13.4	Microstructure of fire-damaged KFRC	266
	13.5	Conclusions	268
	References		269
14	Fire performance in eco-friendly concrete: An overview		
	Paul O. Awovera, Havtham F. Isleem, and Vamsi Nagaraju		
	14.1	Introduction	277
	14.2	Materials for eco-friendly concrete	280
	14.3	Fire resistance of green concrete: A sustainable solution	
		for structural safety	289
	14.4	Developments and future demands	292
	14.5	Conclusions	293
	References		293
15	Ther	momechanical properties of constituent materials for	
	evalu	ating fire resistance of FRP-strengthened concrete	
	structures		
	V.K.R. Kodur and P.P. Bhatt		
	15.1	Introduction	301
	15.2	Elevated temperature thermomechanical properties of FRP:	
		State of the art	303
	15.3	Properties of fire insulation	316
	15.4	Recommended property relations	319
	15.5	Applicability of the recommended properties—Case study	322
	15.6	Conclusions	332
	References		332

341

Contributors

Muhammad Abid College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, China

Khatereh Ahmadi Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

Oluwatobi Gbenga Aluko Department of Structure and Material, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; Civil Engineering Department, Ekiti State State University, Ado Ekiti, Nigeria

Eleni Asimakopoulou School of Engineering and Computing, University of Central Lancashire, Preston, United Kingdom

Paul O. Awoyera Department of Civil Engineering, Prince Mohammad bin Fahd University, Khobar, Dhahran, Saudi Arabia

P.P. Bhatt ESi, Aurora, IL, United States

Zhijian Chen Department of Civil Engineering, The University of Hong Kong, Hong Kong, China

Tom Cotton Department of Transport and Planning, Cladding Safety Victoria, Docklands, VIC, Australia

Mehdi Dehestani Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

Erica C. Fischer School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, United States

Thomas Gernay Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, United States

Ashley Hunt Department of Transport and Planning, Cladding Safety Victoria, Docklands, VIC, Australia

Haytham F. Isleem School of Applied Technologies, Qujing Normal University, Qujing, Yunnan, China

Hyeonsoo Jung School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, Cheonan, Republic of Korea

Mariyana Aida Ab Kadir Department of Structure and Material, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Jeonghyun Kim Faculty of Civil Engineering, Wrocław University of Science and Technology, Wrocław, Poland

Namho Kim School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, Cheonan, Republic of Korea

V.K.R. Kodur Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States

Dionysios Kolaitis School of Mechanical Engineering, National Technical University of Athens, Athens, Greece

Thomas W. Loh Innovative Fire and Façade Engineering Group, RMIT University, Melbourne, VIC, Australia

Chenzhi Ma Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, United States

Jize Mao College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, China

Seyed Sina Mousavi Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran

Seyed Soheil Mousavi Ajarostaghi Department of Mechanical Engineering, University of Sherbrooke, Sherbrooke, QC, Canada

Vamsi Nagaraju Department of Civil Engineering, SRKR Engineering College, Bhimavaram, India

Veasna Ati Noth Innovative Fire and Façade Engineering Group, RMIT University, Melbourne, VIC, Australia

Serdar Selamet Department of Civil Engineering, Bogazici University, Istanbul, Türkiye

Kate Thuy Quynh Nguyen Innovative Fire and Façade Engineering Group, RMIT University, Melbourne, VIC, Australia

Jack Trevaskis Department of Transport and Planning, Cladding Safety Victoria, Docklands, VIC, Australia

Xia Yan Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, United States

Hongseok Yang School of Industrial Design & Architectural Engineering, Korea University of Technology & Education, Cheonan, Republic of Korea

Jamaluddin Mohamad Yatim Department of Structure and Material, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Hailong Ye Department of Civil Engineering, The University of Hong Kong, Hong Kong, China

Shayan Zeb College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, China

Preface

Ongoing demands for innovation, sustainability, and safety keep the construction sector constantly changing and pushing its boundaries. It is critical in this evertransforming environment to comprehend how building materials behave when exposed to varying threats, wherein one such complex threat is fire. The book titled *Construction Materials and Their Properties for Fire Resistance and Insulation* explores the intricate realms of construction and insulation materials and fire safety and provides a thorough analysis of the mechanical, structural, and thermal characteristics of different materials spanning a total of 15 chapters.

The first section, *Fire Protection and Materials' Performance*, lays the groundwork by going over basic ideas such as temperature fluctuations, thermal characteristics, and how fire affects various materials. Every chapter clarifies the properties and behaviors that are essential for fire safety engineering, ranging from sprayed fireresistant materials to cold-formed steels and timber. Effective mitigation techniques are also illuminated by insights into the strength recovery process through postfire curing.

The second section, *Concrete: Behavior under Fire Exposure*, explores the intricacies involved in the behavior of concrete when exposed to fire. This section examines state-of-the-art research on fire reaction and recovery, ranging from the inventive field of 3D-printed concrete to the robustness of zero-cement formulations. Engineers and researchers working to improve fire-resistant concrete structures can learn much from the chapters on strain development, cooling regimes, and residual property evaluation.

This volume also covers the most recent developments in green concrete technology from the lens of fire safety. Information and data regarding the use of eco-friendly materials such as kenaf and the thermomechanical characteristics of structures strengthened with fiber-reinforced polymers (FRP) are documented. The integration of theoretical frameworks and experimental results provides a comprehensive understanding of the obstacles and prospects related to fire-resistant construction materials.

We, the editors of this extensive volume, sincerely thank all contributors for sharing their knowledge and perspectives. Their commitment to expanding our understanding of fire engineering has enhanced this compilation and will surely spur more developments in the area. We believe that engineers, scholars, and students working to improve the sustainability and safety of built environments worldwide will find this book invaluable. We also sincerely thank each and every reviewer for their thorough analysis and insightful criticism of the chapters that were submitted, which helped to bring this volume to completion. Lastly, we express our gratitude to the Elsevier editorial and management team for their unwavering support during the development and production of this book.

> Your Editors Paul O. Awoyera and M.Z. Naser