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Abstract 8 

This paper presents the Firefighter Optimization (FFO) algorithm as a new metaheuristic for 9 

optimization problems that stems inspiration from the collaborative strategies often deployed by 10 

firefighters in firefighting activities. Such strategies include adaptive response to changing 11 

conditions, coordination among multiple firefighters (i.e., agents) to converge on a common goal, 12 

balancing exploration and exploitation by maintaining diversity within the search space and 13 

adapting its parameters to navigate complex landscapes. To evaluate the performance of FFO, 14 

extensive experiments were conducted, wherein the FFO was examined against 13 commonly used 15 

optimization algorithms, namely, the Ant Colony Optimization (ACO), Bat Algorithm (BA), 16 

Biogeography-Based Optimization (BBO), Flower Pollination Algorithm (FPA), Genetic 17 

Algorithm (GA), Grey Wolf Optimizer (GWO), Harmony Search (HS), Particle Swarm 18 

Optimization (PSO), Simulated Annealing (SA), Tabu Search (TS), and Whale Optimization 19 

Algorithm (WOA), and across 24 benchmark functions, as well as 10 standard functions and 4 real 20 

engineering problems from the CEC 2020 suite. The results demonstrate that FFO achieves 21 

comparative performance and, in some scenarios, outperforms commonly adopted optimization 22 

algorithms in terms of the obtained fitness, time taken for exaction, and research space covered 23 

per unit of time. More specifically, FFO ranked first in the Distance per Unit Time metric and 24 

maintained a top 5 performance in higher dimensions (i.e., 20D and 50D).  25 

Keywords: Optimization; Benchmarking; Metaheuristics. 26 

1.0 Introduction 27 

Metaheuristics play a large role in the domain of optimization. These algorithms have been 28 

renowned for their efficacy in tackling complex and multidimensional problems that can typically 29 

be beyond the reach of traditional methods [1]. Metaheuristics are distinguished by their flexibility 30 

and robustness, making them particularly suitable for problems where the solution landscape is 31 

rugged or poorly defined, such as those expected across diverse disciplines, ranging from 32 

engineering and logistics to economics and data science [2]. For example, metaheuristics' 33 

versatility enables their engineering application to optimize design parameters for complex 34 

systems. In logistics, metaheuristics can help solve scheduling and routing problems. Similarly, 35 

metaheuristics can prove beneficial in finance systems to optimize investment portfolios, to name 36 

a few.  37 

Metaheuristics can be defined as high-level strategies that coordinate simpler investigative 38 

methodologies to explore and exploit the search space efficiently [3]. These strategies are 39 

characterized by their reliance on processes that promote some form of balance between 40 

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z
mailto:mznaser@clemson.edu
http://www.mznaser.com/
mailto:naser@umanitoba.ca


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.  

 

Please cite this paper as:  

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and 

Applications. https://doi.org/10.1007/s00521-025-11074-z.  

 

2 

 

exploration of the search space to avoid entrapment in local optima and exploitation mechanisms 41 

that refine promising areas to converge toward global optima [4]. Thus, metaheuristics can be 42 

thought of as generic and adaptable to a broad spectrum of problems with minimal modification. 43 

This can be advantageous to problem-specific algorithms. 44 

Metaheuristics are broadly classified into two categories based on their approach: single-solution 45 

based and population-based. Single-solution metaheuristics iteratively improve a single candidate 46 

solution. These algorithms capitalize on the collective intelligence of the population to explore and 47 

exploit the search space more broadly. Some such metaheuristics include Simulated Annealing 48 

(SA) and Tabu Search (TS) [5]. This group of algorithms employs mechanisms to escape local 49 

optima, like probabilistic acceptance of worse solutions in SA or using memory structures in TS 50 

to avoid revisiting previously explored areas of the search space. The efficiency of single-solution 51 

metaheuristics is tied to their ability to fine-tune a solution through mechanisms like adaptive 52 

neighborhood searches and intensification strategies that home in on promising regions of the 53 

search space [5]. 54 

On the other hand, population-based metaheuristics evolve a group (i.e., population) of solutions 55 

to leverage interactions within this group to explore and exploit the search space collectively [6]. 56 

Some examples under this group include Genetic Algorithms (GA) and Particle Swarm 57 

Optimization (PSO). Such algorithms can maintain diversity within the population and avoid 58 

premature convergence to suboptimal solutions. For instance, GA employs operators such as 59 

crossover and mutation to introduce variability and ensure robust exploration, while PSO mimics 60 

social behaviors of swarms [7]. These two examples can balance exploration and exploitation 61 

through the dynamic adjustment of particle velocities based on individual and collective 62 

experiences. This population-based approach enables these algorithms to effectively navigate 63 

complex, multimodal optimization landscapes by simultaneously exploring multiple regions of the 64 

search space, increasing the likelihood of finding a global optimum. It goes without saying that 65 

hybrid approaches that combine elements from both single-solution and population-based 66 

metaheuristics have emerged as a means to leverage the strengths of both strategies [8]. These 67 

hybrid methods often incorporate mechanisms like adaptive parameter control, multi-stage search 68 

processes, and cooperative co-evolution to enhance performance on a wide range of optimization 69 

problems [9]. 70 

Similarly, metaheuristics can also be classified based on their source of inspiration. Some 71 

metaheuristics are nature-inspired algorithms, wherein they are inspired by natural phenomena, 72 

biological processes, or behaviors observed in animals/plants. These nature-inspired algorithms 73 

often mimic survival mechanisms, evolutionary processes, or social behaviors. For example, GA, 74 

PSO, and Ant Colony Optimization (ACO) are representative of such classification. Then, some 75 

metaheuristics draw inspiration from human behaviors, the physical world, and societal structures. 76 

For instance, both TS and SA incorporate actions and behaviors seen in humans (i.e., memory) 77 

and physical processes (i.e., annealing in metallurgy) [10]. 78 
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Despite their versatility and ease of use, metaheuristics can suffer from challenges [11]. One such 79 

challenge is drawing a balance between exploration and exploitation capabilities. These 80 

capabilities can be crucial for avoiding premature convergence and ensuring the global optimum 81 

is reached. Moreover, the stochastic nature of these algorithms often requires multiple runs to 82 

achieve consistent results, which can be computationally expensive [12]. Fortunately, the field of 83 

metaheuristics continues to grow in response to addressing increasingly complex problems 84 

[13,14]. One notable trend is the hybridization of metaheuristic algorithms, where two or more 85 

distinct strategies are combined to exploit their complementary strengths. For instance, hybrid 86 

algorithms might combine one algorithm's explorative power with another's intensive exploitation 87 

capabilities. Such hybridization can potentially yield solutions that are both diverse and precise. 88 

Further, recent studies have proposed novel metaheuristic algorithms such as the Improved 89 

Crowding Particle Algorithm (I-CPA) and the Tree Seed Algorithm (TSA) [15]. For instance, I-90 

CPA has been applied to optimize engineering design problems with multi-objectives and complex 91 

constraints, improving the balance between exploration and exploitation [16]. Similarly, TSA, 92 

inspired by tree seed dispersal mechanisms, has been successfully used in solving scheduling and 93 

resource allocation problems [17]. These advancements highlight the ongoing evolution and 94 

diversification of metaheuristic algorithms and showcase their adaptability to various domains. In 95 

addition to these recent advancements, other metaheuristics such as the Harris Hawks Optimization 96 

(HHO) and the Arithmetic Optimization Algorithm (AOA) have gained attention due to their 97 

robust performance across a variety of domains [18,19]. HHO, inspired by the cooperative hunting 98 

strategy of Harris hawks, has been applied to challenging problems, including engineering, 99 

medical, data mining and clustering [20]. AOA, based on arithmetic operations, has also shown 100 

success in solving complex mathematical and engineering optimization problems. These emerging 101 

algorithms further underline the potential of metaheuristics in addressing diverse optimization 102 

challenges, contributing to a growing repository of tools designed to tackle specific industrial and 103 

research needs [19]. 104 

Still, as computational challenges grow and the need for efficient optimization strategies 105 

intensifies, the role of metaheuristics becomes increasingly important and warranted. The ability 106 

of metaheuristics to adapt and provide feasible and efficient solutions. The above motivates this 107 

work wherein we propose a novel algorithm, Firefighter Optimization (FFO), for optimization 108 

problems that could be applied in various areas (e.g., a general purpose algorithm). FFO is 109 

motivated by the strategies and tactics employed by firefighters, such as the dynamic distribution 110 

of resources, adaptive responses to evolving conditions, and coordinated efforts among multiple 111 

firefighters (agents) to achieve a unified objective. FFO also balances exploration and exploitation 112 

by maintaining diversity within the search space and adjusting its parameters to navigate complex 113 

optimization challenges. A number of comparative experiments, supplemented with various 114 

metrics, were carried out to validate the effectiveness and competitiveness of FFO. More 115 

specifically, the performance of FFO and the other selected algorithms was examined across over 116 
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600 tests on a wide range of benchmark and test functions. Our experimental results demonstrate 117 

the effectiveness and competitiveness of FFO compared to state-of-the-art algorithms.  118 

The rest of the paper is organized as follows: Section 2 presents a description of FFO and explains 119 

each component in detail. Sections 3 and 4 describe the aforementioned algorithms and 24 120 

commonly used benchmarking test functions for various complexity levels. Finally, Sections 4 and 121 

5 conclude the paper with a presentation of our comparative results and conclusions/findings 122 

learned from our analysis.  123 

2.0 Description of the Firefighter Optimization (FFO) algorithm  124 

This section describes the FFO in more detail (see flowchart in Fig. 1). We start with a general 125 

description and then dive into a more detailed analysis of FFO’s functions.  126 

2.1 General description 127 

The Firefighter optimization (FFO) algorithm is inspired by the strategies and tactics used by 128 

firefighters to combat fires in real-world scenarios. In the face of a fire, firefighters must 129 

strategically allocate resources, decide when to focus on extinguishing the flames, and when to 130 

protect specific areas or perform rescue operations. More specifically, this optimization technique 131 

draws from various aspects of firefighting, including the dynamic allocation of resources, adaptive 132 

response to changing conditions, and coordination among multiple firefighters (i.e., agents) to 133 

achieve a common goal. Further, the FFO algorithm is designed to balance exploration and 134 

exploitation by maintaining diversity within the search space and adapting its parameters to 135 

navigate complex optimization landscapes. See Table 1 for a comparison of this algorithm against 136 

other commonly used in optimization.  137 

Initialization: The algorithm starts by randomly initializing a population of agents within the 138 

specified bounds of the search space. Each agent represents a potential solution to the optimization 139 

problem. 140 

Evaluation: Each agent's position is evaluated using the objective function, which measures the 141 

fitness or quality of the solution. The best agent, i.e., the one with the lowest fitness value for 142 

minimization problems, is identified as the global best solution. 143 

Adaptive Local Search: The FFO algorithm employs an adaptive local search mechanism to refine 144 

the positions of the agents. This process involves generating perturbations around the current 145 

position of an agent and evaluating the new positions. The perturbations are adjusted adaptively 146 

based on the agent's performance and the iteration count. This local search helps agents escape 147 

local optima and explore the solution space more effectively. 148 

Crossover and Mutation: To enhance diversity and promote exploration, the FFO algorithm 149 

incorporates crossover and mutation operators. The crossover operator allows agents to exchange 150 

information, creating new solutions by combining parts of two parent agents. The mutation 151 
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operator introduces random changes to an agent's position, providing an additional mechanism to 152 

explore new areas of the search space. 153 

Perturbation Mechanism: When agents fail to improve over a certain number of iterations, a 154 

perturbation mechanism is triggered. This mechanism mimics the adaptive response of firefighters 155 

to changing conditions. Agents undergo a larger perturbation, guided by the global best agent, to 156 

move towards potentially better regions of the search space. The intensity of the perturbation 157 

increases with the number of unsuccessful iterations, allowing the algorithm to escape stagnation 158 

and continue searching for optimal solutions. 159 

Adaptive Step Size: The step size used in the local search and perturbation mechanisms is 160 

adaptively adjusted based on the algorithm's progress. If the algorithm detects stagnation, the step 161 

size is increased to encourage exploration. Conversely, if the algorithm is converging towards a 162 

solution, the step size is reduced to fine-tune the search and improve solution accuracy. 163 

Cooling Schedule: The FFO algorithm incorporates a cooling schedule inspired by simulated 164 

annealing. The temperature parameter, which controls the acceptance probability of worse 165 

solutions during the local search, is gradually reduced over iterations. This allows the algorithm to 166 

initially explore more freely and then gradually focus on exploitation as it approaches 167 

convergence. 168 

Termination Criteria: The algorithm runs until one or more termination criteria are met. These 169 

criteria can include reaching a maximum number of iterations, exceeding a predefined number of 170 

iterations without improvement, or achieving a target fitness value. The termination criteria ensure 171 

that the algorithm does not run indefinitely and provides a solution within a reasonable time frame. 172 
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 173 

Fig. 1 Flowchart of FFO 174 
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2.2 Detailed description 175 

A more detailed description of FFO’s functions is provided herein. 176 

Initialization (__init__) 177 

The initialization function (__init__) of the FirefighterOptimization class sets up the algorithm's 178 

parameters, agents, and initial conditions for optimization. These parameters include the objective 179 

function, dimensions of the problem, number of agents, maximum iterations, no-improvement 180 

limit, and bounds for the search space. Additional parameters stemming from existing algorithms 181 

for crossover, mutation, simulated annealing, and perturbation control are also set up. The agents 182 

(i.e., solutions) are initialized randomly within the specified bounds, and the best global agent and 183 

fitness are identified at the start.  184 

Initialization Process: 185 

The process can be broken down into the following steps: 186 

Parameter Setup 187 

Agents Initialization: Agents are randomly distributed within the bounds: 188 

Best Agent Identification: The initial best global agent and its fitness are determined: 189 

Other Parameters: Additional parameters like step size, mutation rates, and counters are initialized: 190 

Agent Evaluation (evaluate_agents) 191 

The evaluate_agents function assesses the fitness of each agent within the initiated population. 192 

This function updates the best global fitness and agent if/when a better solution is found. This 193 

function calculates the fitness of each agent based on the objective function and updates the global 194 

best agent if an improved solution is identified. This evaluation process also guides the algorithm's 195 

search process toward better solutions. Mathematically, the evaluation involves computing the 196 

objective function for each agent and identifying the agent with the minimum fitness value.  197 

Objective Function, f(x): The function to be minimized and is evaluated for each agent xi. 198 

Fitness Calculation: For each agent 𝑥𝑖, the fitness is 𝑓(𝑥𝑖). 199 

Best Fitness Update: The global best fitness and agent are updated if a new minimum is found. 200 

Evaluation Process 201 

The evaluation process can be broken down into the following steps: 202 

Fitness Calculation 203 

Best Agent Identification 204 

Return Fitness Values 205 

Agent Update (update_agents) 206 

The update_agents function is responsible for evolving the population of firefighters (i.e., agents) 207 

to maintain diversity through crossover, mutation, and perturbation operations. This function 208 

involves modifying agent positions in the solution space to explore new regions. As inspired by 209 

genetic algorithms, this function applies crossover to combine traits from different agents, 210 
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mutation1 to introduce random changes, and perturbations to escape local optima. Mathematically, 211 

the update process includes the following key components: 212 

Crossover Operation 213 

Mutation Operation 214 

Perturbation Operation 215 

Update Process: The update process involves the following steps: 216 

Evaluate Agents: The fitness of agents is then evaluated to update the global best fitness achieved: 217 

Crossover and Mutation: Each agent undergoes crossover and mutation based on set probabilities: 218 

Perturbation: If no improvement is observed for an extended period, this function applies 219 

perturbations: 220 

Boundary Check: Agents are clipped within the bounds:  221 

Trajectory and Perturbation History: Updates to agents are recorded for trajectory analysis 222 

 223 

Local Search (local_search) 224 

The local_search function refines an agent's position by exploring its neighborhood. This function 225 

helps agents escape local optima and find better solutions. This function involves making small 226 

adjustments to an agent's position to find a better solution in its vicinity. The process is guided by 227 

a temperature parameter, allowing the acceptance of worse solutions early on to escape local 228 

optima. As the temperature decreases, the search becomes more focused on local refinement – in 229 

a similar process to controlling fires. Mathematically, local search applies perturbations to an 230 

agent's position and evaluates the new positions. The acceptance of new positions is probabilistic, 231 

influenced by a temperature parameter.  232 

Perturbation 233 

Temperature 234 

Acceptance Probability 235 

Local Search Process: The process involves the following steps: 236 

Temperature Calculation: The temperature is calculated based on the iteration: 237 

Local Best Initialization: The current agent is considered the local best: 238 

Perturbation and Evaluation: Small adjustments are made to the agent's position, and new positions 239 

are evaluated: 240 

Acceptance Check: New positions are accepted based on fitness improvement or probabilistically: 241 

Return Local Best: The refined local best position is then returned: 242 

Perturbation Application (apply_perturbation) 243 

Perturbation application is a strategy to escape local optima by making larger adjustments to 244 

agents' positions, which can be particularly useful when the algorithm stagnates. The 245 

apply_perturbation function introduces significant changes to agents' positions based on the global 246 

best agent when no improvement is observed. In mathematical notation, perturbation involves 247 

adjusting an agent's position towards the global best agent, scaled by an intensity factor, such that: 248 

Direction Vector: 249 

Perturbation: 250 

 
1 Further information on these operations will be provided in a subsequent section. 
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Perturbation Process 251 

The process involves the following steps: 252 

Direction Calculation: The direction vector from the agent to the global best is calculated: 253 

Perturbation Calculation: A perturbation is applied based on the direction vector and intensity: 254 

New Position Calculation: The agent's new position is calculated: 255 

Crossover (crossover) 256 

The crossover function combines parts of two agents to create new agents as a means of 257 

introducing diversity into the initialized population. This genetic algorithm-inspired method helps 258 

explore new solutions by recombining existing ones. Key components in this function include: 259 

Crossover Point 260 

New Agents 261 

Crossover Process: The process involves the following steps: 262 

Crossover Point Selection: A random crossover point is selected: 263 

Agent Combination: New agents are created by combining segments of the parent agents: 264 
Return New Agents: The new agents are returned: 265 

Cooling Schedule (cooling_schedule) 266 

The cooling_schedule function adjusts the step size based on the algorithm's progress, similar to 267 

the cooling option in simulated annealing. The cooling schedule involves gradually reducing the 268 

step size as the algorithm progresses (in a similar manner to controlling the fire toward the later 269 

stages of firefighting). This process allows for a finer search of the solution space over time, 270 

balancing exploration and exploitation. Mathematically, the cooling schedule involves updating 271 

the step size based on the number of iterations and the no-improvement counter such that: 272 

Step Size Update: 273 

The step size is reduced based on a cooling factor. 274 

Cooling Process: 275 

The process involves the following steps: 276 

Step Size Adjustment: The step size is adjusted based on the no-improvement counter: 277 

 278 

Execution Loop (run) 279 

The run function controls the main execution loop of the algorithm, where agents are updated, 280 

evaluated, and the cooling schedule is applied until a termination condition is met. It also tracks 281 

the best solution and its fitness across iterations. The execution loop is the core of the optimization 282 

process. It iteratively updates agents, evaluates their fitness, applies the cooling schedule, and 283 

checks termination conditions. This loop continues until the optimization criteria are met, ensuring 284 

that the algorithm converges to an optimal solution. Mathematically, the execution loop involves 285 

iterating over the update and evaluation processes while tracking the best solution. Key 286 

components include: 287 

Execution Process 288 

The process involves the following steps: 289 

Initialization: The fitness history and trajectory are initialized 290 

Main Loop: The main loop iterates until the termination condition is met 291 
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Return Best Solution: The best global agent and fitness are returned 292 

Termination Check (should_terminate) 293 

The should_terminate function determines whether the algorithm should stop based on several 294 

conditions: maximum iterations reached, no improvement for a set number of iterations, or 295 

achieving a target fitness level. Thus, this function ensures that the algorithm terminates when 296 

further exploration is unlikely to yield better results.  297 

Iteration Check: The algorithm stops if the maximum number of iterations is reached (i.e., 𝑘 ≥ max_iter). 298 

No Improvement Check: The algorithm stops if no improvement is observed for a set number of iterations. 299 

Target Fitness Check: The algorithm stops if the target fitness level is achieved. 300 

Termination Process 301 

The process involves the following steps: 302 

Condition Check: The termination condition is evaluated based on the iteration, no-improvement 303 

counter, and best global fitness 304 

Return Condition: The termination condition is returned 305 

Execution Time (get_execution_time) 306 

The get_execution_time function calculates the total runtime of the algorithm as a means to 307 

present a measure for evaluating the time efficiency of the algorithm. This execution time is 308 

calculated as the difference between the end time and the start time.  309 

Trajectory Tracking (get_trajectory) 310 

The get_trajectory function records the sequence of solutions explored by the algorithm, which 311 

can be further analyzed to examine the search behavior and pathway through the solution space. 312 

The trajectory involves recording the positions of agents over time.  313 

Total Distance Traveled (get_total_distance) 314 

The get_total_distance function computes the cumulative distance traveled by the algorithm in the 315 

solution space. Such a distance can be an indicator of the algorithm’s exploratory behavior and 316 

efficiency. The total distance traveled involves summing the Euclidean distances between 317 

consecutive positions of agents.  318 

class FirefighterOptimization: 319 

    def __init__(self, objective_func, dimension, num_agents=100, max_iter=500, no_improve_limit=30, bounds=(-320 

5.12, 5.12), step_size=1.0, crossover_probability=0.5, mutation_probability=0.1, initial_temp=100.0, 321 

cooling_rate=0.95, verbose=False, use_additional_conditions=False, target_fitness=1e-5): 322 

        self.objective_func = objective_func 323 

        self.dimension = dimension 324 

        self.num_agents = num_agents 325 

        self.max_iter = max_iter 326 

        self.no_improve_limit = no_improve_limit 327 

        self.bounds = bounds 328 

        self.agents = np.random.uniform(bounds[0], bounds[1], (num_agents, dimension)) 329 

        self.best_global_agent = np.copy(self.agents[np.argmin([self.objective_func(agent) for agent in self.agents])]) 330 
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        self.best_global_fitness = self.objective_func(self.best_global_agent) 331 

        self.step_size = step_size 332 

        self.crossover_probability = crossover_probability 333 

        self.mutation_probability = mutation_probability 334 

        self.initial_temp = initial_temp 335 

        self.cooling_rate = cooling_rate 336 

        self.mutation_rates = np.full(self.num_agents, 0.1) 337 

        self.no_improve_counter = 0 338 

        self.iteration = 1 339 

        self.fitness_history = [] 340 

        self.perturbation_history = [] 341 

        self.verbose = verbose 342 

        self.use_additional_conditions = use_additional_conditions 343 

        self.target_fitness = target_fitness 344 

        self.trajectory = [] 345 

        self.start_time = None 346 

        self.end_time = None 347 

 348 

    def evaluate_agents(self): 349 

        fitness = np.array([self.objective_func(agent) for agent in self.agents]) 350 

        best_index = np.argmin(fitness) 351 

        if fitness[best_index] < self.best_global_fitness: 352 

            self.best_global_fitness = fitness[best_index] 353 

            self.best_global_agent = np.copy(self.agents[best_index]) 354 

            self.no_improve_counter = 0 355 

        else: 356 

            self.no_improve_counter += 1 357 

        return fitness 358 

 359 

    def update_agents(self): 360 

        self.evaluate_agents() 361 

        for i in range(self.num_agents): 362 

            if np.random.rand() < self.crossover_probability: 363 

                partner_index = np.random.randint(self.num_agents) 364 

                self.agents[i], self.agents[partner_index] = self.crossover(self.agents[i], self.agents[partner_index]) 365 

            if np.random.rand() < self.mutation_probability: 366 

                self.agents[i] = self.local_search(self.agents[i], i) 367 

            if self.no_improve_counter > 50: 368 

                self.agents[i] = self.apply_perturbation(self.agents[i], 0.1 + 0.02 * (self.no_improve_counter - 50)) 369 

            self.agents[i] = np.clip(self.agents[i], self.bounds[0], self.bounds[1]) 370 

            self.trajectory.append(np.copy(self.agents[i])) 371 

            self.perturbation_history.append(self.agents[i]) 372 
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 373 

    def local_search(self, agent, index): 374 

        temp = self.initial_temp * (self.cooling_rate ** self.iteration) 375 

        best_local = agent 376 

        best_local_fitness = self.objective_func(agent) 377 

        for _ in range(10 + 5 * (self.no_improve_counter // 100)): 378 

            perturbation = np.random.normal(0, self.step_size * self.mutation_rates[index], self.dimension) 379 

            candidate = best_local + perturbation 380 

            candidate_fitness = self.objective_func(candidate) 381 

            if candidate_fitness < best_local_fitness or np.random.rand() < np.exp((best_local_fitness - 382 

candidate_fitness) / temp): 383 

                best_local = candidate 384 

                best_local_fitness = candidate_fitness 385 

        return best_local 386 

 387 

    def apply_perturbation(self, agent, intensity): 388 

        direction = self.best_global_agent - agent 389 

        perturbation = np.random.normal(0, intensity, self.dimension) * direction 390 

        return agent + perturbation 391 

 392 

    def crossover(self, agent1, agent2): 393 

        crossover_point = np.random.randint(1, self.dimension) 394 

        new_agent1 = np.concatenate((agent1[:crossover_point], agent2[crossover_point:])) 395 

        new_agent2 = np.concatenate((agent2[:crossover_point], agent1[crossover_point:])) 396 

        return new_agent1, new_agent2 397 

 398 

    def cooling_schedule(self): 399 

        if self.no_improve_counter > 50: 400 

            self.step_size *= 0.98 401 

        else: 402 

            self.step_size *= 0.99 403 

 404 

    def run(self): 405 

        self.fitness_history = [] 406 

        self.trajectory = [] 407 

        self.iteration = 1 408 

        self.start_time = time.time() 409 

        while not self.should_terminate(): 410 

            self.update_agents() 411 

            self.cooling_schedule() 412 

            self.fitness_history.append(self.best_global_fitness) 413 

            if self.verbose: 414 
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                print(f"Iteration {self.iteration}, Best Fitness {self.best_global_fitness}, No Improve Counter 415 

{self.no_improve_counter}") 416 

            self.iteration += 1 417 

        self.end_time = time.time() 418 

        return self.best_global_agent, self.best_global_fitness, self.fitness_history 419 

 420 

    def should_terminate(self): 421 

        if self.use_additional_conditions: 422 

            termination_condition = ( 423 

                self.iteration >= self.max_iter or  424 

                self.no_improve_counter > self.no_improve_limit or  425 

                self.best_global_fitness < self.target_fitness 426 

            ) 427 

        else: 428 

            termination_condition = self.iteration >= self.max_iter 429 

        if termination_condition and self.verbose: 430 

            print(f"Terminating: Iteration={self.iteration}, No Improve Counter={self.no_improve_counter}, Best 431 

Fitness={self.best_global_fitness}") 432 

        return termination_condition 433 

 434 

    def get_execution_time(self): 435 

        return self.end_time - self.start_time 436 

 437 

    def get_trajectory(self): 438 

        return self.trajectory 439 

 440 

    def get_total_distance(self): 441 

        distance = 0 442 

        for i in range(1, len(self.trajectory)): 443 

            distance += np.linalg.norm(self.trajectory[i] - self.trajectory[i - 1]) 444 

        return distance 445 
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Table 1 Qualitative comparison between FFO and commonly used optimization algorithms  446 

Feature/Aspect FFO ACO BA BBO FPA GA GWO HS PSO SA TS WOA 

Inspiration Firefighting 
strategies 

Ant foraging 
behavior 

Echolocation of 
bats 

Biogeography 
concepts 

Flower 
pollination 

Natural 
evolution 

Grey wolves' 
hunting 

Musical harmony Swarming 
behavior of 
birds/fish 

Annealing 
process in 
metallurgy 

Memory-based 
search 

Whale bubble-
net hunting 

Exploration vs. 
Exploitation 

Balanced through 
adaptive 
mechanisms 

Strong 
exploration 
initially, then 
exploitation 

Balanced Balanced Balanced Exploration 
initially, then 
exploitation 

Balanced Balanced Balanced Exploration 
initially, then 
exploitation 

Exploitation-
focused 

Balanced 

Memory Usage Utilizes historical 
data for 
perturbation 

Pheromone trails 
as indirect 
memory 

Historical positions 
of bats 

Habitat 
suitability index 

Best solutions 
pollinate 

Population-
based, uses 
historical data 

Pack leader 
memory 

Harmony memory Historical best 
positions 

Simulated states Tabu list Whale 
positions 
memory 

Main Operators Local search, 
crossover, 
mutation, 
perturbation 

Pheromone 
update, path 
selection 

Echolocation, 
frequency tuning 

Migration, 
mutation 

Global and 
local 
pollination 

Selection, 
crossover, 
mutation 

Encircling prey, 
attacking, 
searching 

Pitch adjustment, 
random selection 

Velocity and 
position update 

Temperature-
based state 
changes 

Tabu list and 
neighborhood 
search 

Encircling prey, 
bubble-net 
hunting 

Adaptivity Adaptive step size 
and perturbation 
intensity 

Pheromone 
evaporation rate 

Frequency 
adjustment, 
loudness and pulse 
rate 

Migration rates, 
mutation rates 

Switching 
probability 

Mutation and 
crossover 
probabilities 

Adaptation in 
search phases 

Adjustments in 
harmony memory 
consideration rate 

Inertia weight, 
cognitive and 
social 
coefficients 

Temperature and 
cooling schedule 

Adaptive tabu list 
size 

Adaptive 
hunting 
mechanism 

Convergence 
Speed 

Generally fast due 
to adaptive 
mechanisms 

Moderate Fast Moderate Fast Fast Fast Moderate Fast Moderate Slow to moderate Fast 

Computational 
Complexity 

Moderate to high, 
depends on 
parameter settings 

Moderate Moderate Moderate Moderate Moderate Moderate Moderate Low to moderate Low Moderate to high Moderate 

Parameter 
Sensitivity 

Moderately 
sensitive; requires 
tuning 

Highly sensitive 
to pheromone 
parameters 

Moderately 
sensitive 

Moderately 
sensitive 

Moderately 
sensitive 

Highly sensitive Moderately 
sensitive 

Moderately 
sensitive 

Moderately 
sensitive 

Highly sensitive Moderately 
sensitive 

Moderately 
sensitive 

Scalability Good for high-
dimensional 
problems 

Moderate Good Good Good Good Good Good Good Moderate Good Good 

Flexibility High, can 
incorporate 
various strategies 

Moderate Moderate Moderate Moderate High Moderate Moderate High High Moderate Moderate 

 447 

▪ Inspiration: The natural or artificial process that inspired the algorithm's development. 448 

▪ Exploration vs. Exploitation: The algorithm's balance between searching new areas (exploration) and refining known good 449 

areas (exploitation). 450 

▪ Memory Usage: How the algorithm uses past information to guide future searches. 451 

▪ Main Operators: The primary mechanisms or processes the algorithm uses to find solutions. 452 

▪ Adaptivity: The algorithm's ability to adjust its parameters dynamically during the optimization process. 453 

▪ Convergence Speed: How quickly the algorithm typically finds a solution. 454 

▪ Solution Quality: The effectiveness of the algorithm in finding high-quality solutions. 455 

▪ Computational Complexity: The computational resources required by the algorithm, often related to time and memory usage. 456 

▪ Parameter Sensitivity: The degree to which the algorithm's performance is affected by its parameter settings. 457 

▪ Scalability: The algorithm's capability to handle problems of increasing size or complexity. 458 

▪ Flexibility: The algorithm's adaptability to different types of optimization problems. 459 

▪ Diversity Maintenance: How the algorithm ensures a diverse set of solutions to avoid premature convergence. 460 

▪ Typical Applications: Common fields or problems where the algorithm is frequently applied. 461 
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3.0 Description of benchmarking algorithms, experiments, and functions  462 

This section describes the experimental examination used to benchmark FFO. For a start, FFO was 463 

examined against 13 other commonly used optimization algorithms, namely, the Ant Colony 464 

Optimization (ACO), Bat Algorithm (BA), Biogeography-Based Optimization (BBO), Cuckoo 465 

Search (CS), Firefly Algorithm (FA), Flower Pollination Algorithm (FPA), Genetic Algorithm 466 

(GA), Grey Wolf Optimizer (GWO), Harmony Search (HS), Particle Swarm Optimization (PSO), 467 

Simulated Annealing (SA), Tabu Search (TS), and Whale Optimization Algorithm (WOA). All of 468 

these algorithms were used in their default settings2 , and a brief description of each is presented 469 

herein for completion. We invite interested readers to review the original publications for these 470 

algorithms to learn more about their settings and applications.  471 

3.1 Ant Colony Optimization (ACO) 472 

The Ant Colony Optimization (ACO) was formulated by Dorigo and colleagues [21] based on the 473 

pheromone-laying behavior observed in certain ant species. This method uses ants as artificial 474 

agents to simulate the decision-making process of real ants in selecting paths. As ants traverse 475 

paths, they deposit pheromones that guide subsequent ants toward promising solutions. The ACO 476 

algorithm is a probabilistic approach to problem-solving where the search space is represented as 477 

a graph, and paths through this graph are evaluated based on the intensity of pheromone deposits. 478 

The algorithm's efficiency hinges on several parameters: alpha (influence of pheromone on path 479 

selection, set at 1.0), beta (influence of heuristic information on path choice, set at 2.0), and rho 480 

(rate of pheromone evaporation, set at 0.5). This algorithms has been successfully applied to 481 

network routing, scheduling, and other optimization problems that involve finding optimal paths 482 

through graphs [22]. 483 

3.2 Bat Algorithm (BA) 484 

Developed by Yang et al. in 2012 [23], the Bat Algorithm (BA) was designed to mimic the 485 

echolocation behavior of bats. This algorithm models bats that emit sound waves to navigate and 486 

locate prey, translating this biological mechanism into a search and optimization strategy. In BA, 487 

each simulated bat adjusts its flight based on velocity, loudness, and echolocation frequency, 488 

which dynamically changes from exploration to exploitation phases depending on the proximity 489 

to optimal solutions. Key parameters of BA include alpha (initial loudness, set at 0.5), gamma (rate 490 

of loudness decrease and emission rate increase, set at 0.5), and frequency range (fmin at 0, fmax at 491 

2.0). BA is adept at tackling complex problems characterized by continuous and multimodal search 492 

spaces and has shown effectiveness in engineering design and dynamic optimization tasks [24]. 493 

 
2 The default setting for FFO include: 

FirefighterOptimization: 
def __init__(self, objective_func, dimension, num_agents=100, max_iter=500, no_improve_limit=30, bounds=(-5.12, 
5.12), step_size=1.0, crossover_probability=0.5, mutation_probability=0.1, initial_temp=100.0, cooling_rate=0.95, 
verbose=False, use_additional_conditions=False, target_fitness=1e-5):) 
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3.3 Biogeography-Based Optimization (BBO) 494 

Introduced by Simon in 2008 [25], Biogeography-Based Optimization (BBO) leverages migration 495 

concepts from biogeography to solve optimization problems. BBO operates on the premise that 496 

species migrate between habitats, affecting their survival and reproduction rates. The algorithm 497 

features migration operators that simulate gene flow by exchanging solution features, akin to 498 

species migration in nature. Key components include the habitat suitability index, which evaluates 499 

the desirability of solutions, and migration rates that determine the exchange intensity between 500 

solutions. BBO also uses mutation to enhance genetic diversity and avoid premature convergence 501 

on suboptimal solutions. The BBO algorithm has proven effective in network design, power 502 

systems optimization, and other applications where geographic considerations are crucial [26]. 503 

3.4 Cuckoo Search (CS) 504 

Cuckoo Search (CS) was developed by Yang and Deb [27]. This algorithm is inspired by the 505 

obligate brood parasitism of some cuckoo species by laying their eggs in the nests of other host 506 

birds. If a host bird discovers the eggs are not its own, it will either throw them away or abandon 507 

its nest. The algorithm uses this idea to lay a new solution (egg) into a randomly chosen nest, and 508 

the best nests with high-quality eggs will be carried over to the next generations. CS is known for 509 

its simplicity and flexibility. It has been effectively applied in solving problems like structural 510 

design, scheduling, and routing problems where the search space is discrete, and the global 511 

optimum is hidden among many local optima [28]. 512 

3.5 Firefly Algorithm (FA) 513 

The flashing behavior of fireflies inspires the Firefly Algorithm (FA). Such a flashing behavior 514 

acts as a signal system to attract other fireflies. FA, developed by Yang in 2008 [29], uses these 515 

biologically inspired techniques to handle optimization problems and functions. Fireflies in the 516 

algorithm search the space by moving towards brighter and more attractive fireflies. The 517 

attractiveness is proportional to the brightness, and both decrease as their distance increases. The 518 

landscape of the objective function determines the brightness of a firefly. A key advantage of FA 519 

is its ability to deal with multimodal optimization problems, as it naturally divides the population 520 

into subgroups that converge to different optima. Some of the key settings in the FA algorithm 521 

include alpha (a randomness factor that affects the movement of a firefly and helps fireflies explore 522 

the search space beyond the immediate neighboring fireflies, selected at 0.5), beta (controls how 523 

strongly other fireflies are drawn towards it, selected at 1.0), and gamma (influences how the 524 

attractiveness of a firefly decreases with distance, selected at 1.0). This feature makes it 525 

particularly useful for complex functions with multiple local optima. FA has been applied to 526 

problems like economic dispatch, clustering, and image processing [30]. 527 

3.6 Flower Pollination Algorithm (FPA) 528 

Devised by Yang et al. in 2012 [31], the Flower Pollination Algorithm (FPA) algorithm emulates 529 

the natural pollination processes of flowers. It aims to optimize solutions by alternating between 530 

self-pollination and cross-pollination mechanisms that are naturally facilitated by natural vectors 531 

like insects, wind, or water. This approach maintains solution diversity and promotes effective 532 
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convergence. In FPA, solutions are represented as flowers whose attractiveness—determined by 533 

fitness—guides the pollination process. The algorithm uses local pollination for minor adjustments 534 

within the immediate search area and global pollination, employing Levy flights for broader 535 

searches to escape local optima. FPA's dual strategy has been effectively applied to engineering 536 

design and economic load dispatch challenges [32]. 537 

 538 

3.7 Genetic Algorithm (GA) 539 

Holland [33] formulated the Genetic Algorithm (GA) as a computational analog to natural 540 

selection, embodying the principle of survival of the fittest. GA begins with a population of 541 

randomly generated individuals, evolving over generations to optimize solutions. Selection is 542 

fitness-based, favoring solutions that perform better under a defined fitness function. GA 543 

incorporates mutation and crossover as genetic operators to introduce variability and new traits 544 

into offspring. Typical parameters include a population size of 100, a mutation rate of 0.1, and a 545 

crossover rate of 0.1. This algorithm is widely utilized across fields such as optimization, automatic 546 

programming, and machine learning, where it helps solve complex problems efficiently [34]. 547 

3.8 Grey Wolf Optimizer (GWO) 548 

The Grey Wolf Optimizer (GWO), introduced by Mirjalili et al. in 2014 [35], is a nature-inspired 549 

metaheuristic algorithm inspired by grey wolves' social structure and hunting behavior. Grey 550 

wolves exhibit a distinct hierarchical system consisting of alpha, beta, delta, and omega wolves, 551 

with each tier playing a specific role within the pack. In GWO, this hierarchy is mirrored in the 552 

solution process: the alpha wolf represents the optimal solution, followed by beta and delta as the 553 

second and third best solutions, respectively, while omega wolves embody the remaining candidate 554 

solutions. The algorithm leverages this structure to simulate the wolves' hunting strategy, which is 555 

segmented into three phases: tracking, encircling, and attacking prey, each reflecting a critical 556 

phase of the optimization process. GWO is adept at navigating complex, multidimensional 557 

landscapes, making it valuable in fields such as mechanical engineering design and renewable 558 

energy optimization, where the search spaces often exhibit high nonlinearity and multimodality. 559 

3.9 Harmony Search (HS) 560 

Developed by Geem et al. in 2001 [36], Harmony Search (HS) is an optimization algorithm 561 

inspired by the improvisational process of musicians tuning their instruments to achieve aesthetic 562 

harmony. This algorithm iteratively adjusts solution vectors in a similar fashion to musicians' 563 

adjust pitches to optimize a given function. HS employs a stochastic approach rather than a 564 

gradient-based method, enhancing its efficacy in addressing non-differential and discrete 565 

problems. The algorithm’s performance is governed by two primary parameters: the harmony 566 

memory consideration rate (set at 0.9), which dictates the likelihood of selecting existing memory 567 

solutions for new harmonies, and the pitch adjustment rate (set at 0.3), which determines how 568 

much the chosen solutions are modified. HS has shown significant utility in solving complex 569 

engineering problems such as structural and water network design, where traditional methods may 570 

struggle due to the extensive search spaces involved. 571 
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3.10 Particle Swarm Optimization (PSO) 572 

Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart in 1995 [37]. This 573 

algorithm simulates the social behaviors observed in flocks of birds or schools of fish. This 574 

metaheuristic optimizes problem solutions by iteratively enhancing a population of candidate 575 

solutions based on the personal and collective experiences of the particles. For example, the PSO 576 

starts with randomly initialized particles (solutions) and updates their positions within the search 577 

space by balancing personal best achievements and global knowledge shared across the swarm. 578 

The algorithm is known for its simplicity and adaptability, often requiring few parameter 579 

adjustments. It utilizes three key parameters: swarm size (typically 100 particles), cognitive 580 

coefficient (influence of the particle’s own memory, set at 1.0), and social coefficient (influence 581 

of neighboring particles, also set at 1.0). These factors influence the dynamics of particle 582 

movements towards optimal solutions. PSO is particularly effective in continuous, high-583 

dimensional environments and has been applied successfully across various domains, including 584 

electrical power systems, robotics, and bioinformatics [38]. 585 

3.11 Simulated Annealing (SA) 586 

Simulated Annealing (SA) was developed by Kirkpatrick et al. in 1983 and Cerny in 1985 [39]. 587 

This is a probabilistic method designed to approximate the global optimum of a function. SA is 588 

inspired by the metallurgical process of annealing, where materials are heated and then gradually 589 

cooled to improve their structural properties. This process is mimicked by allowing a system to 590 

explore higher energy states (solutions) by heating, thereby overcoming local optima, followed by 591 

slow cooling to stabilize at a lower energy state (optimal solution). The algorithm makes random 592 

transitions to neighboring solutions, accepting improvements outright and worse solutions based 593 

on a decreasing probability over time. Key parameters include the initial temperature (set at 100) 594 

and cooling rate (set at 0.95). SA has been successfully applied across various domains, from 595 

economics to computational science [40]. 596 

3.12 Tabu Search (TS) 597 

Tabu Search (TS) was introduced by Glover in the late 1980s [41] as a metaheuristic that extends 598 

beyond local search methods. TS extends such methods by adopting a memory structure, the tabu 599 

list, to avoid cycling back to previously encountered suboptimal solutions. This list temporarily 600 

bans certain moves, helping the algorithm to escape local optima and explore less favorable 601 

solutions that might lead to a globally optimal solution. TS is adaptable, allowing periodic resetting 602 

of the tabu status to balance exploration and exploitation. It is particularly effective in complex 603 

scheduling, logistical planning, and assignment problems, where its ability to navigate challenging 604 

solution spaces is applications [42]. 605 

3.13 Whale Optimization Algorithm (WOA) 606 

The Whale Optimization Algorithm (WOA) was developed by Mirjalili and Lewis in 2016 [43]. 607 

The WOA draws inspiration from the bubble-net feeding behavior of humpback whales. This 608 

algorithm simulates the whales' strategies of encircling prey and using a spiral path to close in, 609 

which are mirrored in the shrinking encircling mechanism and spiral updating position phases of 610 
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the algorithm. These methods allow the WOA to balance exploration and exploitation 611 

dynamically, making it adept at handling complex, non-separable, and nonlinear optimization 612 

problems. WOA's effectiveness is demonstrated in its applications across mechanical design and 613 

industrial engineering, where it optimizes a variety of challenging problem landscapes [44]. 614 

4.0 Description of utilized benchmarking functions  615 

This section describes 24 benchmark functions commonly used in benchmarking analysis. 616 

4.1 Ackley Function 617 

The Ackley function has a two-dimensional form with a relatively uniform plane [45]. This 618 

function also has several dozen local minimums and one global extreme of significantly smaller 619 

value than most of the local minimums. This function allows very efficient testing of optimization 620 

algorithms as regards stopping at local extremes. The Ackley function is designed to test the ability 621 

of optimization algorithms to escape local minima and converge towards a global minimum in a 622 

complex landscape. The global minimum is at 𝑥=0 where 𝑓(𝑥)=0. This function has the following 623 

form: 624 

𝑓(𝑥) = −20 exp (−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) − exp (

1

𝑛
∑ cos(2𝜋𝑥𝑖)𝑛

𝑖=1 ) + 20 + 𝑒    Eq. 1 625 

4.2 Alpine Function 626 

The Alpine function is a multimodal and non-smooth function and hence can provide significant 627 

challenges in terms of local minima and ruggedness tests [46]. This function examines the ability 628 

of optimization algorithms to handle non-differentiable points with abrupt changes. The global 629 

minimum for this function occurs at 𝑥=0 where 𝑓(𝑥)=0. This function can be useful for testing 630 

optimization algorithms in real-world problems involving non-smooth dynamics, such as 631 

mechanical systems with friction or other resistive forces. This function has the following form: 632 

𝑓(𝑥) = ∑ |𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|
𝑛
𝑖=1          Eq. 2 633 

4.3 Booth's Function 634 

This function presents a simple test case for algorithm testing with a convex with a single global 635 

minimum at (𝑥,𝑦) = (1,3) where 𝑓(𝑥,𝑦) = 0. This function has the following form: 636 

𝑓(𝑥, 𝑦) =  (𝑥 + 2𝑦 − 7)2 + (2𝑥 + 𝑦 − 5)2        Eq. 3 637 

4.4 Cross-in-Tray Function 638 

This function is known for its challenging landscape, characterized by a high degree of 639 

multimodality [47]. The function contains several deep holes, indicative of global minima, which 640 

are located symmetrically in the function’s domain, and may present a significant challenge in the 641 

convergence process of algorithms to navigate complex landscapes and avoid local minima in 642 

favor of locating and confirming global minima. The global minima occur at approximately 643 

(𝑥,𝑦)=(1.34941,−1.34941),(−1.34941,1.34941),(1.34941,1.34941),(−1.34941,−1.34941) with 644 

𝑓(𝑥,𝑦)≈−2.06261. This function has the following form: 645 
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𝑓(𝑥, 𝑦) = −0.0001 (|sin(𝑥) sin(𝑦) exp (|100 −
√𝑥2+𝑦2

𝜋
|)| + 1)

0.1

    Eq. 4 646 

4.5 Drop-Wave Function 647 

This function features a rippled wave surface that turn challenging to optimize due to its frequent 648 

local minima and a pronounced global minimum [48]. This is a multimodal function with a global 649 

minimum at (𝑥,𝑦)=(0,0) where f(x,y)=−1. It tests an algorithm's capability to navigate through 650 

frequent oscillations to find the lowest point and is particularly relevant for simulations and 651 

optimizations in fields involving vibrational analysis and wave propagation (i.e., acoustics and 652 

materials science, etc.). This function has the following form: 653 

𝑓(𝑥, 𝑦) = −
1+cos (12√𝑥2+𝑦2)

0.5(𝑥2+𝑦2)+2
          Eq. 5 654 

4.6 Easom Function 655 

The Easom function is a highly unimodal benchmark function stemming from its narrow global 656 

peak that is surrounded by a flat landscape [49]. This function has a constant plane over the vast 657 

majority of the domain with one global minimum, at (𝑥,𝑦)=(𝜋,𝜋) where 𝑓(𝑥,𝑦)=−1, that is difficult 658 

to locate due to the flatness of the surrounding area. Oftentimes, this function is used in testing the 659 

precision and convergence characteristics of optimization algorithms, and their ability to hone in 660 

on and precisely converge to a sharply defined minima. This function has the following form: 661 

𝑓(𝑥, 𝑦) = − cos(𝑥) cos(𝑦) exp (−((𝑥 − 𝜋)2 + (𝑦 − 𝜋)2))      Eq. 6 662 

4.7 Eggholder Function 663 

The Eggholder function has a highly irregular and complex surface characterized by an uneven 664 

plane with several local minimums (of values like its only global minimum) [50,51]. The global 665 

minimum is found at (𝑥,𝑦)=(512,404.2319) where 𝑓(𝑥,𝑦)≈−959.6407. This function is frequently 666 

used in benchmarking sophisticated global optimization algorithms, especially those intended to 667 

solve rugged and unpredictable landscape-based problems. This function has the following form: 668 

𝑓(𝑥, 𝑦) = −(𝑦 + 47) sin (√|(
𝑦+𝑥

2+47
)|) − 𝑥𝑠𝑖𝑛(√|𝑥 − (𝑦 + 47)|)     Eq.7 669 

4.8 Expanded Schaffer's F6 Function 670 

This is an expansion of the original Schaffer's function that hopes to test for algorithm effectiveness 671 

over a broader area with a more complex landscape. More specifically, the function is highly 672 

multimodal and oscillatory and hence presents a significant challenge in identifying the global 673 

minimum amidst numerous local minima. The function has a global minimum at (𝑥,𝑦)=(0,0) where 674 

𝑓(𝑥,𝑦)=0. This function can be used in testing spatial algorithms that may be applied in fields like 675 

geographic information systems and molecular dynamics where spatial relationships and dynamics 676 

are crucial. 677 
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𝑓(𝑥) = 0.5 +  
sin2(√𝑥2+𝑦2)−0.5

[1+0.001(𝑥2+𝑦2)]2          Eq. 8 678 

4.9 Expanded Zakharov Function 679 

This is an extension of the Zakharov function [46] and provides a more challenging scenario for 680 

testing optimization algorithms by combining linear, quadratic, and quartic terms. This function 681 

has a single global minimum at 𝑥=0 where 𝑓(𝑥)=0. This function is used to evaluate the 682 

performance of large-scale optimization algorithms in areas such as financial modeling and energy 683 

systems, where complex interactions between variables are common. 684 

𝑓(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 + (∑ 50𝑖𝑥𝑖
𝑛
𝑖=1 )2 + (∑ 50𝑖𝑥𝑖

𝑛
𝑖=1 )4       Eq. 9 685 

4.10 Goldstein-Price Function 686 

This function was created by Goldstein and Price [52] to provide a multimodal complex landscape 687 

with sharp peaks and valleys. The same function has several local minima and a global minimum 688 

found at (𝑥,𝑦) = (0,−1) with 𝑓(𝑥,𝑦) = 3. This function has the following form: 689 

𝑓(𝑥, 𝑦) = [1 + (𝑥 + 𝑦 + 1)2(19 − 14𝑥 + 3𝑥2 − 14𝑦 + 6𝑥𝑦 + 3𝑦2)] × [30 + 2(𝑠𝑥 −690 

3𝑦)2(18 − 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦 + 27𝑦2)]       Eq. 10 691 

4.11 Griewank Function 692 

The Griewank function has large, flat areas interrupted by periodic narrow, deep valleys [53]. This 693 

function is highly multimodal and oscillatory and can challenge the algorithm's ability to find the 694 

global minimum (at 𝑥=0) amidst frequent changes in gradient. It is particularly used to test the 695 

efficiency of algorithms in handling complex oscillations and multimodal functions with 696 

application within acoustic waveguides design and structural engineering with regard to vibrations. 697 

This function has the following form: 698 

𝑓(𝑥) = 1 + ∑
𝑥𝑖

2

4000
−𝑛

𝑖=1 ∏ cos (𝑛
𝑖=1 𝑥𝑖/√𝑖)         Eq. 11 699 

4.12 Himmelblau's Function 700 

Developed by Himmelblau [54], this function is characterized by multiple global minima, which 701 

makes it interesting for testing the robustness of optimization algorithms to locate and distinguish 702 

between multiple optima within a complex landscape. This function has four identical global 703 

minima located at 704 

(𝑥,𝑦)=(3,2),(−2.805118,3.131312),(−3.779310,−3.283186),(3.584428,−1.848126) where 705 

𝑓(𝑥,𝑦)=0. This function has the following form: 706 

𝑓(𝑥, 𝑦) = (𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2        Eq. 12 707 

4.13 Holder Table Function 708 

The Holder Table function features several deep and narrow global minima and is designed to 709 

challenge optimization algorithms in finding and recognizing global solutions in a multimodal 710 

space [55]. The function’s global minima are symmetrically located around the origin, with four 711 
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known global minima where 𝑓(𝑥,𝑦)=−19.2085. This function can serve as a good evaluation metric 712 

for multimodal optimization capabilities in logistics and routing problems where multiple 713 

equivalent optimal routes need to be evaluated. This function has the following form: 714 

𝑓(𝑥, 𝑦) = − |sin(𝑥) cos(𝑦) exp (|1 −
√𝑥2+𝑦2

𝜋
|)|       Eq. 13 715 

4.14 Levy Function N.13 716 

This is a variant to the Levi function. This variant is designed to test algorithms against steep 717 

gradients and local optima. More specifically, this function has steep ridges and a complex global 718 

structure with a global minimum at (𝑥,𝑦)=(1,1) where 𝑓(𝑥,𝑦)=0. The Levi can be useful in 719 

examining algorithms that need to handle sudden changes in gradient effectively. This function 720 

has the following form: 721 

𝑓(𝑥, 𝑦) = sin2(3𝜋𝑥) + (𝑥 − 1)2(1 + sin2(3𝜋𝑦)) + (𝑦 − 1)2 (1 + sin2(2𝜋𝑦)   Eq. 14 722 

4.15 Matyas Function 723 

This function was created by Matyas [56] as convex function that could serve as an elementary 724 

test case for basic functionality and efficiency of optimization algorithms in a controlled setting. 725 

The Matyas function has a global minimum at (𝑥,𝑦) = (0,0) where 𝑓(𝑥,𝑦)=0. This function has the 726 

following form: 727 

𝑓(𝑥, 𝑦) =  0.26(𝑥2 + 𝑦2) − 0.48𝑥𝑦         Eq. 15 728 

4.16 Michalewicz Function 729 

This function was created by Michalewicz [57] to be especially difficult for evolutionary 730 

algorithms to solve. This function is highly multimodal, with sharp peaks and valleys that are 731 

sensitive to the variable 𝑚, which controls the steepness of the valleys and ridges. The function's 732 

global minimum becomes more difficult to locate as 𝑚 increases (with a typical value of  𝑚=10). 733 

This function can be used in the testing and development of genetic and evolutionary algorithms, 734 

particularly effective for applications requiring high precision in aerodynamics and biomechanical 735 

engineering. This function has the following form: 736 

𝑓(𝑥) = − ∑ sin(𝑥𝑖) sin2𝑚(𝑛
𝑖=1

𝑖𝑥𝑖
2

𝜋
)          Eq. 16 737 

4.17 Rastrigin Function 738 

This function is named after Rastrigin [58] and presents an example of a highly non-linear 739 

multimodal function with frequent local minima. The global minimum is at 𝑥=0 where 𝑓(𝑥)=0. 740 

The function is particularly designed to test the algorithm's capability to escape local minima and 741 

is widely used in the testing and development of algorithms in evolutionary computation and real-742 

world scenarios where noise and local minima are prevalent, such as in electronic circuit design. 743 

This function has the following form: 744 

𝑓(𝑥) = 10𝑛 + ∑ [𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖)]𝑛

𝑖=1         Eq. 17 745 
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4.18 Rosenbrock Function 746 

This function was designed by Rosenbrock in 1960  as a non-linear and non-convex function to 747 

test the performance of optimization algorithms over rugged terrain with a narrow, curved valley 748 

leading to a global minimum [59]. This function has a global minimum inside a long, narrow, 749 

parabolic shaped flat valley. In general, finding the valley is straightforward but converging to the 750 

global minimum is difficult. A common multidimensional generalization of this function has the 751 

following form: 752 

𝑓(𝑥) =  ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]𝑛−1
𝑖=1        Eq. 18 753 

4.19 Schaffer Function N. 2 754 

This function is a variant belonging to the family of functions introduced by Schaffer, which are 755 

used to evaluate the performance of optimization algorithms in handling oscillating landscapes 756 

with narrow valleys [60]. The function is non-convex and multimodal, with a global minimum at 757 

(𝑥,𝑦)=(0,0) where 𝑓(𝑥,𝑦)=0. This variant can be sensitive to initial conditions due to the presence 758 

of sharp peaks and deep valleys. This function has the following form: 759 

𝑓(𝑥, 𝑦) = 0.5 +
sin2(𝑥2−𝑦2)−0.5

[1+0.001(𝑥2+𝑦2)]2         Eq. 19 760 

4.20 Schwefel Function 761 

The Schwefel function  is a classic optimization test problem introduced by Schwefel [61]. This 762 

function is initially created for evolutionary algorithms and has complex and non-linear large 763 

number of local minima (with a global minimum located near the bounds of the search space at 764 

𝑥=(420.9687,…,420.9687) where 𝑓(𝑥)≈0). This function can be helpful in in fields such as 765 

aerospace for optimizing the shapes and trajectories of dynamic flying bodies. This function has 766 

the following form: 767 

𝑓(𝑥) = 418.9829𝑛 − 𝑥𝑖sin (√|𝑥𝑖|)          Eq. 20 768 

4.21 Sphere Function 769 

The Sphere function is one of the classical and simplest benchmark functions often used to test 770 

preliminary optimization algorithms in terms of convergence and accuracy. The Sphere function 771 

is continuous, convex, and unimodal with a global minimum at 𝑥∗ = 0 where 𝑓(𝑥∗) = 0. This 772 

function has the following form: 773 

𝑓(𝑥) =  ∑ 𝑥𝑖
2𝑛

𝑖=1            Eq. 21 774 

4.22 Styblinski-Tang Function 775 

The Styblinski-Tang function has steep valleys and multiple local minima and hence is recognized 776 

for its utility in testing optimization algorithms [62]. This function is multimodal, with each 777 

variable contributing quadratically and quartically to the output. This function can be suitable for 778 

evaluating the efficiency of algorithms in high-dimensional spaces and their capability to scale 779 

with increasing dimensionality (which makes it appropriate for practical engineering problems 780 

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.  

 

Please cite this paper as:  

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and 

Applications. https://doi.org/10.1007/s00521-025-11074-z.  

 

24 

 

involving material design and circuit optimization with multiple variables required to be 781 

simultaneously optimized). The global minimum for this function is at 𝑥𝑖=−2.903534x (for all 𝑖) 782 

where 𝑓(𝑥)=−39.16599𝑛 (where 𝑛 is the number of dimensions). This function has the following 783 

form: 784 

𝑓(𝑥) =
1

2
∑ (𝑥𝑖

4 − 16𝑥𝑖
2 + 𝑥𝑖5)𝑛

𝑖=1          Eq. 22 785 

4.23 Three-hump Camel Function 786 

This function is named for its shape, resembling three camel humps and is designed as a simple 787 

and effective benchmark for testing optimization algorithms [63]. This function can be used to 788 

evaluate an algorithm’s capability to escape local minima and find the global minimum. The 789 

Three-hump Camel function has a global minimum at (𝑥,𝑦)=(0,0) where 𝑓(𝑥,𝑦)=0. This function 790 

has the following form: 791 

𝑓(𝑥, 𝑦) = 2𝑥2 − 1.05𝑥4 +
𝑥6

6
+ 𝑥𝑦 + 𝑦2        Eq. 23 792 

4.24 Whitley's Function 793 

Whitley's function is known for its complex landscape with a high number of local minima [51]. 794 

This function is tests algorithms for their ability to distinguish subtle gradient changes and avoid 795 

premature convergence. This function can be used for complex, real-world problems such as 796 

landscape exploration and molecular configuration. This function has the following form: 797 

𝑓(𝑥) = ∑ ∑ (
100(𝑥𝑖

2−𝑥𝑗)
2

+(1−𝑥𝑗)
2

4000
− cos (200(𝑥𝑖

2 − 𝑥𝑗)
2𝑛

𝑗=1
𝑛
𝑖=1 + (1 − 𝑥𝑗)^2) + 1)   Eq. 24 798 

Table 2 includes the name of each function, its typical domain range, primary characteristics, 799 

known challenges, and the dimensionality for which the function is typically evaluated. Figure 1 800 

compares these functions visually.  801 

Table 2 Holistic comparison of the examined functions.  802 

Function 
Name 

Domain 
Range 

Characteristics Challenges 
Typical 

Dimensionality 
Minima/

Minimum 

Ackley (-5, 5) 
Nearly flat outer region, 

large hole 
Global minimum difficult 

to find due to flatness 
Multiple 0 

Alpine (-10, 10) 
Multimodal, peaks and 

valleys 

Peaks make locating 
global minima 

challenging 
Multiple 0 

Beale's (-4.5, 4.5) Multimodal Several local minima 2 0 

Booth's (-10, 10) 
Smooth, few local 

minima 
Simplicity, limited 

challenge 
2 0 

Cross-in-Tray (-10, 10) Highly multimodal 
Multiple global minima 

spread out 
2 −2.0626 

Drop-Wave 
(-5.12, 
5.12) 

Central peak 
surrounded by ring of 

minima 

Central peak difficult to 
stabilize on 

Multiple -1 
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Easom (-100, 100) Narrow peak, unimodal 
Extremely narrow 
attraction region 

2 -1 

Eggholder (-512, 512) 
Large search space, 

numerous local minima 
Complex landscape, 

many minima 
Multiple -959.640 

Expanded 
Schaffer's F6 

(-10, 10) 
Numerous local 

minima, complex 
landscape 

Maintaining algorithm 
stability 

2 0 

Expanded 
Zakharov 

(-10, 10) 
Combines parabolic 

and linear terms 
Optimization of 

combined effects 
Multiple 0 

Goldstein-
Price 

(-2, 2) 
Complex topology, 

multimodal 
Local minima near 

boundaries 
2 3 

Griewank (-600, 600) 
Many widespread 

minima 
Large search space, 
many local minima 

Multiple 0 

Himmelblau's (-5, 5) Multiple global minima 
Identifying correct global 

minimum 
2 0 

Holder Table (-10, 10) 
Symmetric, multiple 

global minima 
Symmetry can confuse 

algorithms 
Multiple -19.2085 

Levy N.13 (-10, 10) 
Steep valleys, complex 

structure 
Pronounced ridges and 

steep drops 
2 0 

Matyas (-10, 10) Smooth, unimodal Limited complexity 2 0 

Michalewicz (0, π) 
Designed for 

evolutionary algorithms 
Sharp, narrow valleys Multiple Multiple 

Rastrigin 
(-5.12, 
5.12) 

Highly multimodal, 
oscillating 

Numerous local minima, 
large search space 

Multiple 0 

Rosenbrock 
(-2.048, 
2.048) 

Non-convex, narrow 
curved valley 

Finding the global 
minimum in the narrow 

valley 
Multiple 0 

Salomon's (-100, 100) 
Strong global structure, 

multimodal 
Multiple deceptive local 

minima 
Multiple 0 

Schaffer N. 2 (-100, 100) Sharp ridges, flat areas 
Balancing exploration 

and exploitation 
Multiple 0 

Schwefel (-500, 500) 
Sinusoidal, maxima and 

minima 

Identifying global 
minimum amid 

deceptive maxima 
Multiple 0 

Sphere 
(-5.12, 
5.12) 

Smooth, convex, 
unimodal 

Simplicity may not 
challenge advanced 

algorithms 
Multiple 0 

Styblinski-
Tang 

(-5, 5) 
Steep valleys, 
multimodal 

Harsh penalties for 
incorrect solutions 

Multiple -39.165n 

Three-hump 
Camel 

(-5, 5) Three humps, unimodal Misleading local minima 2 0 

Whitley's (-10, 10) 
Highly complex and 

multimodal 
Complexity and size of 

search space 
Multiple 0 

 803 
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 804 

Fig. 1 Visual representation of the utilized test and benchmark functions 805 

5.0 Discussion, experiments, results, and analysis 806 

Two sets of experiments were conducted to evaluate the performance of the FFO algorithm. In the 807 

first, we examine the performance of the FFO algorithm and the other listed algorithms against the 808 

aforenoted benchmark functions in 2D settings. Then, we examine the algorithmic performance 809 

against the scalable functions at higher dimensions (20D and 50D). In all cases, the experiments 810 

entitled a comparison of algorithmic performance in terms of best fitness and fitness history 811 
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achieved, time taken to execute the analysis per algorithm, trajectory analysis, and a combined 812 

combination of metrics. All of these items are discussed herein in detail. 813 

The best fitness is defined as the most favorable value of the objective function obtained in an 814 

analysis by an algorithm across all of its iterations or agents. This metric is traced progressively, 815 

with the algorithm updating this metric whenever an improved solution is found. Then, the 816 

exaction time is defined as the total time from the start of its execution until it terminates. 817 

Trajectory refers to the sequence of points that document the position of agents (or the best agent) 818 

in the search space. This distance is calculated by summing up the Euclidean distances between 819 

consecutive points in the trajectory. Further, four additional categories were used to evaluate the 820 

selected algorithms. These include documenting the performance of algorithms in terms of 821 

identifying the functions that took the longest (and shortest) time to solve and those that achieved 822 

the most (and least) accuracy. 823 

To facilitate a leaner comparison, the execution time and distance explored metrics were combined 824 

into a new metric named the Distance per Unit Time metric. This metric directly measures the 825 

average distance covered per unit of time, which is directly interpretable as: 826 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑒𝑟 𝑈𝑛𝑖𝑡 𝑇𝑖𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 =
 𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐸𝑥𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
  827 

This measures how much distance is covered on average per second. Therefore, higher values 828 

indicate more efficient exploration of the search space. 829 

The conducted analysis was ran and evaluated in a Python 3.10.5 environment using an Intel(R) 830 

Core(TM) i7-9700F CPU @ 3.00GHz and an installed RAM of 32.0GB. To ensure fairness, the 831 

control parameters of FFO and the 13 metaheuristics employed in the performance evaluation 832 

simulation were presented earlier and are found in our simulation script. In all cases, all algorithms 833 

ran for 100, 1000, and 3000 iterations and with 10, 50, and 100 agents. As mentioned above, the 834 

first leg of the analysis focused on all benchmarking functions at 2D, and the second leg focused 835 

on scalable functions (12 out of the original 24 functions) at higher dimensions (20D and 50D).  836 

2D setting 837 

Table 3 and Fig. 2 list the overall obtained results from the analysis carried out on all algorithms 838 

and functions in 2D setting. This table presents a comparative performance analysis of various 839 

optimization algorithms based on metrics such as best fitness, execution time, and distance 840 

metrics. Ant Colony Optimization, for instance, shows a mean best fitness of 1.22E+05 with high 841 

variability (standard deviation of 9.48E+05) and ranges from -563 to 7.35 in its best fitness 842 

performance. In terms of spatial efficiency, it maintains a low average distance metric (mean of 843 

0.092). On the other hand, the Firefly algorithm demonstrates a broader range in execution time, 844 

peaking at 1803 seconds, and exhibits a significantly wider spread in the distance metric, reaching 845 
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up to 91,600. The FFO with additional conditions3 "OFF" significantly improves best fitness and 846 

execution efficiency and large exploration capabilities to a maximum of 1.20E+08.  It is quite clear 847 

that the FFO ranked well in all metrics and achieved the top ranking in terms of the Distance per 848 

Unit Time metric. 849 

 850 

Fig. 2 Ranking of algorithms in 2D settings 851 

 
3 The FFO (with additional conditions OFF) runs the FFO in a similar fashion to the other algorithms (i.e., to the same 

number of iterations without any additional stopping criteria). The counterpart version (with additional conditions 

ON) runs the FFO with all stopping criteria as described above. A true comparison between all algorithms should rely 

on the OFF version and hence is maintained herein.  
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Table 3 Overall results for 2D setting 852 

Algorithm 
Best Fitness Execution Time (s) Distance metric Distance 

per Unit 
Time mean std min max mean std min max mean std min max 

Ant Colony 
Optimization 

1.22E+05 9.48E+05 -5.63E+02 7.35E+00 7.35E+00 9.39E+00 9.00E-02 3.51E+01 9.26E-02 1.36E+00 0.00E+00 2.00E+01 1.26E-02 

Bat Algorithm -1.83E+00 4.58E+02 -9.77E+02 2.63E+00 2.63E+00 3.67E+00 1.88E-02 1.99E+01 3.15E+01 1.58E+02 0.00E+00 1.14E+03 1.20E+01 

Biogeography-
Based Optimization -9.72E+00 1.93E+02 -8.81E+02 7.34E+00 7.34E+00 9.76E+00 7.13E-02 4.42E+01 2.64E+03 1.17E+04 0.00E+00 1.41E+05 3.60E+02 

Cuckoo Search -4.46E+01 1.92E+02 -9.60E+02 5.99E+01 5.99E+01 1.18E+02 5.19E-02 7.51E+02 8.48E+01 3.83E+02 0.00E+00 3.74E+03 1.42E+00 

FFO (additional 
conditions OFF) -4.03E+01 1.84E+02 -9.60E+02 4.61E+00 4.61E+00 7.82E+00 2.50E-02 5.23E+01 2.64E+06 1.21E+07 1.47E+03 1.20E+08 5.74E+05 

FFO (additional 
conditions ON) -2.04E+01 1.20E+02 -8.18E+02 9.11E-02 9.11E-02 1.25E-01 0.00E+00 7.27E-01 1.02E+05 3.86E+05 0.00E+00 3.36E+06 1.12E+06 

Firefly Algorithm -2.25E+01 1.71E+02 -8.75E+02 1.73E+02 1.73E+02 3.09E+02 1.31E-01 1.80E+03 7.31E+02 6.83E+03 0.00E+00 9.16E+04 4.23E+00 

Flower Pollination 
Algorithm 

-3.85E+01 1.75E+02 -9.41E+02 2.86E+00 2.86E+00 3.93E+00 2.33E-02 2.07E+01 6.87E+01 3.08E+02 0.00E+00 2.39E+03 2.40E+01 

Genetic Algorithm -3.02E+01 1.65E+02 -9.56E+02 1.92E+00 1.92E+00 2.48E+00 2.40E-02 1.17E+01 5.62E+00 1.44E+01 3.62E-03 1.14E+02 2.93E+00 

Grey Wolf 
Optimizer 

-1.51E+01 1.78E+02 -9.60E+02 5.38E+00 5.38E+00 7.49E+00 4.14E-02 4.01E+01 3.59E+03 1.62E+04 8.90E-02 1.44E+05 6.67E+02 

Harmony Search -3.95E+01 1.78E+02 -9.60E+02 7.52E-01 7.52E-01 1.19E+00 6.00E-03 7.33E+00 1.18E+02 4.52E+02 0.00E+00 3.42E+03 1.57E+02 

Particle Swarm 
Optimization 

-3.76E+01 1.74E+02 -9.60E+02 2.39E+00 2.39E+00 3.13E+00 2.46E-02 1.43E+01 1.07E+05 9.96E+05 3.74E+01 1.44E+07 4.45E+04 

Simulated 
Annealing 

-3.80E+00 1.34E+02 -7.18E+02 3.65E-02 3.65E-02 3.41E-02 9.97E-04 1.25E-01 1.04E+02 9.39E+01 2.30E+00 7.66E+02 2.86E+03 

Tabu Search 1.02E+01 1.81E+02 -7.87E+02 8.23E-02 8.23E-02 7.41E-02 3.99E-03 2.63E-01 5.77E+02 5.14E+02 2.89E+01 1.51E+03 7.01E+03 

Whale Optimization 
Algorithm 

-4.14E+01 1.78E+02 -9.58E+02 2.45E+00 2.45E+00 3.22E+00 2.47E-02 1.47E+01 3.73E+03 1.30E+04 2.94E-02 9.68E+04 1.52E+03 
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Now, we gain further insights into the performance of all algorithms across different settings 854 

through the illustration presented in Fig. 3. This figure shows a sample of trends collected on the 855 

selected functions to show how the algorithms perform. It is quite clear that the FFO performs 856 

similarly to other algorithms. For example, the first sub-figure highlights performance variations 857 

of several optimization algorithms on the Ackley function at 2D, with a specific focus on the 858 

number of agents employed. The FFO with additional conditions "OFF" consistently maintains 859 

lower fitness values across all agent configurations compared to most algorithms, suggesting 860 

higher efficiency. This is in contrast to algorithms like Bat algorithm and Ant Colony Optimization, 861 

which show a marked increase in average best fitness. The FFO with additional conditions "OFF" 862 

outperforms the latter at higher agent counts, which indicates better scalability with increasing 863 

agents. Similar observations can also be made in terms of the algorithmic performance with the 864 

number of iterations – especially in the case of the Egg Holder function, which shows superior 865 

performance for the FFO algorithm.  866 
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 870 

Fig. 3 Sample of trends across different experimental settings 871 

Here, we analyze and rank the performance of optimization algorithms across various settings, 872 

specifically focusing on the dimensions, maximum iterations, and the number of agents involved 873 

in terms of identifying those that took the longest (and shortest) time to solve, and that achieved 874 

the most (and least) accuracy. This process was conducted at each unique setting. First, we rank 875 

the algorithms by returning the top three entries of the specified metric and setting. Then, we 876 

aggregate these frequencies both locally (for each setting) and globally (across all settings) to 877 

provide a comprehensive view of which algorithms consistently perform well or underperform 878 

across varied configurations.  879 

We report that the Firefly algorithm appears predominantly in the longest to solve category with a 880 

total of 27 out of 27 occurrences. This suggests that the Firefly algorithm, despite its potential 881 

advantages in exploring complex landscapes, tends to have longer execution times compared to 882 

other algorithms in the study. This could be due to its inherent characteristics, such as the 883 

attractiveness parameter and light intensity, which might cause slower convergence, especially in 884 

scenarios involving complicated objective functions. The FFO (additional conditions ON) 885 

algorithm consistently appears as the fastest solver, also with 27 instances. This algorithm was 886 

followed by the Tabu Search. The success in this category indicates the algorithmic potential for 887 

applications requiring quick solutions where computational resources can be limited. 888 

In the most accurate category, the Cuckoo Search leads with 9 occurrences, followed by the FFO 889 

(additional conditions OFF) with 5 occurnaces and various other algorithms. The notable 890 

performance of Cuckoo Search could be attributed to its unique search capabilities, leveraging 891 

Lévy flights for global search combined with a probabilistic switch to local search. On the other 892 
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hand, the Ant Colony Optimization is predominantly featured in the least accurate category with 893 

25 instances. This might indicate ACO's challenges in maintaining high accuracy across the 894 

settings tested, potentially due to its reliance on pheromone trails, which might lead to premature 895 

convergence or difficulty in escaping local optima in certain types of problems.  896 

Other sets of comparisons between selected algorithms can be seen in Fig. 4. For example, Fig. 4a 897 

compares the average history fitness across all functions and for all algorithms. This figure shows 898 

that the FFO (additional conditions OFF) demonstrates a rapid convergence initially compared to 899 

others like the Bat and Grey Wolf Optimizer, which exhibit more gradual improvements. Figure 4b 900 

compares the best fitness achieved in FFO, Tabu Search, the Bat, and the Grey Wolf Optimizer 901 

algorithms. In this figure, FFO (additional conditions OFF) excels in deeply multi-modal landscapes 902 

like the Ackley and Griewank functions. This suggests that FFO (additional conditions OFF) is 903 

particularly adept at managing and escaping local optima in complex search spaces. The graph 904 

also shows minimal variance in performance across different configurations (agent counts and 905 

iteration limits), indicating the robustness and effectiveness of this algorithm. 906 

Figure 4c shows the performance of all algorithms in tackling continuous and non-continuous 907 

functions to provide a clear comparison of how each algorithm handles different types of function 908 

landscapes. Here, the FFO (additional conditions OFF) shows comparable performance in both 909 

categories, underscoring its versatility. More specifically, in continuous functions, it ranks among 910 

the top performers, closely competing with algorithms like Particle Swarm Optimization and 911 

Genetic Algorithm. The FFO (additional conditions OFF) also shows similar performance in non-912 

continuous functions. These figures further show the comparative performance and consistency of 913 

the newly proposed FFO algorithm against those well established methods.  914 
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 919 

 920 

Fig. 4 Further cross examination between the FFO and other notable algorithms 921 

To complement the above analysis, the Friedman and Wilcoxon non-parametric statistical tests for 922 

ranking the above algorithm were carried out [64,65]. These statistical methods can evaluate and 923 

compare the performance of optimization algorithms across multiple functions. The Friedman test 924 
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ranks algorithms based on their mean performance across all tested functions, where a lower rank 925 

indicates superior performance (i.e., achieving better, usually lower, fitness values). Each function 926 

is treated equally, and the ranks are averaged to provide an overall ranking for each algorithm. The 927 

test then checks if the observed rankings are statistically significant. 928 

On the other hand, the Wilcoxon test focuses on pairwise comparisons between algorithms. This 929 

test calculates the signed rank of the differences in performance between each pair to assess 930 

whether one algorithm consistently outperforms the other. While both tests aim to highlight the 931 

best-performing algorithms, they approach the evaluation from slightly different perspectives—932 

Friedman emphasizes overall ranking across all scenarios, while Wilcoxon emphasizes 933 

consistency in pairwise dominance. Figure 5 shows the outcome of these tests. As one can see, the 934 

FFO ranks 4 and 5 in these tests, respectively. PSO, GWO, and FPO rank in the top three spots.  935 

 936 

Fig. 5 Friedman and Wilcoxon non-parametric statistical tests for 2D 937 

20D and 50D setting 938 

Similar to the previous analysis and discussion, Table 4 and Fig. 6 list the overall obtained results 939 

from the analysis carried out on all algorithms and functions in higher dimensions of 20D and 50D. 940 

Thus, only scalable functions were used in this examination. These functions include Ackley, 941 

Eggholder, Easom, Expanded Shaffer’s F6, Expanded Zakharov, Griewank, Gldstien-Price, 942 

Rosenbrock, Schaffer N.02, Schwefel, Sphere, and Whitely.  943 

In this comparative analysis, the FFO (additional conditions OFF) demonstrates a creditable mean 944 

best fitness of 2.88E+03, which, while not the lowest in our dataset, offers a viable trade-off 945 

between fitness achievement and computational resources when compared to algorithms like the 946 

Simulated Annealing, which has a lower mean best fitness of 5.17E-02 but at a significantly 947 
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reduced complexity. In terms of execution time, the FFO (additional conditions OFF) records a 948 

mean of 9.35E+02 seconds, positioning it as a middle-range performer. It is notably faster than 949 

high-accuracy contenders such as the Firefly algorithm and the Biogeography-Based Optimization, 950 

which clocks in at mean times of 2.93E+02 seconds and 1.06E+01 seconds, respectively, reflecting 951 

a more efficient performance considering the relatively lower fitness figures. 952 

On a more positive note, the FFO (additional conditions OFF) has signifncat exploration capability, 953 

as measured by the Total Distance metric, where it posts a mean of 1.58E+07. This is significantly 954 

higher than that of the Particle Swarm Optimization and Grey Wolf Optimizer, which stand at 955 

2.98E+05 and 3.10E+04, respectively. Moreover, the Distance per Unit Time for the FFO (with 956 

conditions OFF) is large and stands at 2.95E+06, shadowing those of Cuckoo Search and Harmony 957 

Search, which report 3.41E+01 and 2.85E+03, respectively. This metric highlights the FFO's 958 

efficiency in covering large distances in the search space per unit of time, reinforcing its utility in 959 

expansive and complex problem spaces where speed and breadth of exploration are paramount. It 960 

is quite clear that the FFO ranked well in all metrics (see Fig. 6).  961 

 962 

Fig. 6 Ranking of algorithms in 20D and 50D settings 963 
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Table 4 Overall results for 20D and 50D settings 964 

Algorithm Best Fitness Execution Time (s) Distance metric Distance 
per Unit 

Time mean std min max mean std min max mean std min max 

Ant Colony 
Optimization 

7.61E+01 1.41E+02 9.04E-02 6.78E+02 9.42E+05 1.02E+07 -9.60E+02 1.48E+08 1.59E+03 4.57E+03 0.00E+00 3.20E+04 2.09E+01 

Bat Algorithm 4.07E+00 8.43E+00 1.80E-02 7.49E+01 1.58E+04 7.26E+04 -9.77E+02 5.13E+05 9.75E+01 7.05E+02 0.00E+00 9.91E+03 2.39E+01 

Biogeography-
Based Optimization 

1.06E+01 1.74E+01 7.30E-02 1.37E+02 1.22E+04 5.86E+04 -9.45E+02 4.44E+05 2.69E+04 9.81E+04 0.00E+00 1.24E+06 2.55E+03 

Cuckoo Search 1.20E+02 3.66E+02 5.37E-02 3.63E+03 4.22E+03 2.62E+04 -9.60E+02 2.99E+05 4.10E+03 1.23E+04 0.00E+00 9.31E+04 3.41E+01 

FFO (additional 
conditions OFF) 

5.35E+00 1.00E+01 2.62E-02 8.16E+01 2.88E+03 2.19E+04 -9.60E+02 2.70E+05 1.58E+07 6.46E+07 1.50E+03 6.49E+08 2.95E+06 

FFO (additional 
conditions ON) 

1.81E-01 2.90E-01 0.00E+00 2.67E+00 9.01E+03 4.40E+04 -9.02E+02 3.41E+05 5.80E+05 1.95E+06 0.00E+00 1.78E+07 3.21E+06 

Firefly Algorithm 2.93E+02 7.74E+02 1.36E-01 7.35E+03 1.03E+04 5.17E+04 -9.48E+02 5.16E+05 2.06E+03 9.80E+03 0.00E+00 1.02E+05 7.03E+00 

Flower Pollination 
Algorithm 

4.43E+00 8.81E+00 2.39E-02 7.74E+01 4.27E+02 2.82E+03 -9.60E+02 4.03E+04 8.12E+02 2.66E+03 3.89E-02 2.16E+04 1.83E+02 

Genetic Algorithm 3.50E+00 5.87E+00 2.41E-02 4.73E+01 4.01E+02 2.17E+03 -9.60E+02 1.86E+04 9.72E+01 2.11E+02 0.00E+00 1.95E+03 2.78E+01 

Grey Wolf 
Optimizer 

8.40E+00 1.72E+01 4.20E-02 1.52E+02 7.23E+02 3.46E+03 -9.60E+02 2.09E+04 3.10E+04 1.05E+05 6.21E-02 8.51E+05 3.68E+03 

Harmony Search 1.83E+00 4.06E+00 6.99E-03 3.69E+01 4.15E+03 2.89E+04 -9.60E+02 3.48E+05 5.22E+03 2.10E+04 0.00E+00 2.12E+05 1.57E+02 

Particle Swarm 
Optimization 

3.19E+00 5.31E+00 2.50E-02 4.31E+01 4.80E+02 2.67E+03 -9.60E+02 3.35E+04 2.98E+05 9.34E+05 3.24E+01 1.05E+07 4.45E+04 

Simulated 
Annealing 

5.17E-02 7.16E-02 9.97E-04 5.57E-01 4.58E+03 3.05E+04 -8.21E+02 3.73E+05 5.18E+02 7.21E+02 1.78E+00 4.96E+03 2.86E+03 

Tabu Search 1.40E+00 3.07E+00 3.91E-03 2.14E+01 7.04E+02 3.04E+03 -7.53E+02 2.18E+04 5.04E+02 5.25E+02 2.17E+01 2.04E+03 7.01E+03 

Whale Optimization 
Algorithm 

3.19E+00 5.25E+00 2.54E-02 4.18E+01 -5.35E+01 4.24E+02 -9.60E+02 6.14E+03 2.10E+04 6.20E+04 9.85E-02 5.91E+05 1.52E+03 
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Now, we gain further insights into the performance of all algorithms across the settings of 20D 966 

and 50D, as seen in Fig. 7. It can be seen that the FFO performs consistently similarly to other 967 

algorithms at different settings of agents and iterations.  968 

969 
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971 

 972 

Fig. 7 Sample of trends across different experimental settings 973 
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We revisit the ranking performance of the optimization algorithms across the longest (and 974 

shortest) time to solve and that achieved the most (and least) accuracy. Similar to the case of 2D, 975 

the Firefly algorithm leads this category with an appearance frequency of 75, indicating it often 976 

requires the most time to solve the selected benchmark functions. On the other hand, the Ant Colony 977 

Optimization appears far less frequently with a count of 6, suggesting a quicker resolution time but 978 

possibly at the expense of other performance metrics like accuracy or search depth. Then, the 979 

Simulated Annealing dominates the fastest to solve category and hence demonstrates its ability to 980 

swiftly find solutions. In terms of accuracy, Cuckoo Search stands out with 22 appearances, 981 

followed by the FFO (additional conditions OFF) and Particle Swarm Optimization, each scoring 13 982 

occurrences. The Ant Colony Optimization leads as the least accurate with 29 appearances, 983 

followed by the Bat Algorithm at 19, suggesting these algorithms might prioritize exploration or 984 

speed over precision.  985 

Figure 8 paints a series of comparisons between selected algorithms. Figure 8a compares the 986 

average history fitness across all functions and algorithms. This graph shows the average fitness 987 

history across iterations for various optimization algorithms. The FFO (additional conditions OFF) 988 

starts with a rapid convergence compared to other algorithms, which is particularly noticeable 989 

against the backdrop of more gradual improvements shown by the Genetic Algorithm and 990 

Simulated Annealing. The FFO (additional conditions OFF) demonstrates a stabilization around 200 991 

iterations, where its fitness value flatlines. This early convergence suggests that, on average, this 992 

algorithm is efficient in quickly finding a promising area of the search space. 993 

While Fig. 8b compares the best fitness achieved in FFO, Tabu Search, the Bat, and the Grey Wolf 994 

Optimizer algorithms. In Fig. 8b, the performance of FFO (additional conditions OFF) is plotted 995 

across various scalable functions under different settings, showing stable performance for all 996 

functions, except the Rosenbrock, and especially under conditions of higher iterations and larger 997 

agent numbers. These spikes indicate that FFO (additional conditions OFF) can excel in complex, 998 

multimodal landscapes but show variable performance dependent on the function's characteristics 999 

and the search space complexity. Comparing this performance to other algorithms, such as Tabu 1000 

Search, Bat, and Grey Wolf Optimizer, across the same benchmark functions shows generally stable 1001 

performance as well, with some exceptions where fitness spikes, similar to the behavior seen in 1002 

FFO. Figure 8c shows the performance of all algorithms in tackling continuous and non-continuous 1003 

scalable benchmarking functions. The FFO (additional conditions OFF) shows competitive 1004 

performance in all function types. These figures reinforce the performance of the newly proposed 1005 

FFO algorithm against notable algorithms.  1006 
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 1013 

Fig. 8 Further cross examination between the FFO and other notable algorithms  1014 

The Friedman and Wilcoxon non-parametric statistical tests for ranking the above algorithm were 1015 

again carried out for this leg of the investigation. Figure 9 shows that the FFO ranks 5 and 6.5 in 1016 

2D and 6 and 9.5 for 50D for these tests, respectively. PSO, GWO, FPA, and WOA rank in the top 1017 

spots. As seen above, FFO always ranks better without constraints (i.e., conditions = off).  1018 
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 1019 

 1020 

Fig. 9 Friedman and Wilcoxon non-parametric statistical tests carried out for higher dimensions 1021 

(note: Top: 20D, Bottom: 50D) 1022 

Additional testing on functions from the CEC benchmarks (at 2D, 20D and 50D settings) 1023 

The IEEE Congress on Evolutionary Computation (IEEE CEC) is an annual conference that 1024 

focuses on the latest developments and research in evolutionary computation. As part of this 1025 

conference, benchmark functions are commonly used to evaluate the performance of optimization 1026 

algorithms. These benchmark functions, often called CEC functions, are specifically designed to 1027 

present various challenges to optimization methods, such as multimodality, non-separability, and 1028 
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ruggedness. The CEC benchmark suites are updated periodically, and we examine some of the 1029 

functions that appear in the 2020 edition. Each function typically represents a specific optimization 1030 

problem with known difficulty, allowing for a comprehensive evaluation of an algorithm's 1031 

strengths and weaknesses across various problem landscapes. Table 5 lists the CEC 2020 1032 

functions; additional details can be found in the CEC report [66].  1033 

Table 5 CEC 2020 functions.  1034 

No. Functions Fi∗=Fi(x∗) Dimensions tested  

1 Shifted and Rotated Bent Cigar Function (also, CEC 2017 F1) 100 2, 20, 50 

2 Shifted and Rotated Schwefel’s Function (also, CEC 2014 F11) 1100 2, 20, 50 

3 Shifted and Rotated Lunacek bi-Rastrigin Function (also, CEC 2017 F7) 700 2, 20, 50 

4 Expanded Rosenbrock’s plus Griewangk’s Function (also, CEC 2017 F19) 1900 2, 20, 50 

5 Hybrid Function 1 (N=3) (also, CEC 2014 F17) 1700 20, 50 

6 Hybrid Function 2 (N=4) (also, CEC 2017 F16) 1600 20, 50 

7 Hybrid Function 3 (N=5) (also, CEC 2014 F21) 2100 20, 50 

8 Composition Function 1 (N=3) (also, CEC 2017 F22) 2200 2, 20, 50 

9 Composition Function 2 (N=4) (also, CEC 2017 F24) 2400 2, 20, 50 

10 Composition Function 3 (N=5) (also, CEC 2017 F25) 2500 2, 20, 50 

 1035 

The outcome of this analysis is listed in Table 6. This table shows that both FFO and PSW ranked 1036 

first in terms of overall ranking among all metrics. In addition, Fig. 10 shows that the best version 1037 

of FFO ranked  between 3 and 6 for the Friedman and Wilcoxon non-parametric statistical tests, 1038 

respectively.  Overall, PSO, GA, and CS achieved the best rankings in this experiment.1039 
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Table 6 Overall results for 2D, 20D, and 50D settings 1040 

Algorithm 
Best Fitness Execution Time (s) Distance metric Distance per 

Unit Time mean std min max mean std min max mean std min max 

2D 

Ant Colony Optimization 1.30E+08 3.57E+08 1.43E+03 1.20E+09 1.15E+01 1.58E+01 1.27E-01 6.76E+01 7.90E+00 3.60E+01 0.00E+00 2.00E+02 6.86E-01 

Bat Algorithm 4.82E+06 3.55E+07 8.03E+01 2.82E+08 9.10E+00 1.45E+01 2.70E-02 6.32E+01 1.64E+01 4.79E+01 0.00E+00 2.68E+02 1.80E+00 

Biogeography-Based Optimization 6.95E+07 4.58E+08 4.34E+02 3.56E+09 1.79E+01 2.67E+01 9.80E-02 1.12E+02 5.47E+03 1.13E+04 0.00E+00 7.82E+04 3.05E+02 

Cuckoo Search 1.37E+03 9.97E+02 -3.23E+01 2.91E+03 3.36E+02 6.73E+02 1.27E-01 3.07E+03 9.79E+01 9.71E+01 1.11E+00 4.88E+02 2.91E-01 

FFO (additional conditions OFF) 9.30E+04 7.24E+05 -3.24E+01 5.75E+06 1.33E+01 2.30E+01 6.80E-02 1.01E+02 4.13E+06 7.28E+06 8.82E+04 4.05E+07 3.10E+05 

FFO (additional conditions ON) 5.78E+05 4.49E+06 2.99E+01 3.56E+07 4.71E-01 6.22E-01 1.90E-02 4.02E+00 3.28E+05 3.09E+05 3.33E+04 1.74E+06 6.97E+05 

Firefly Algorithm 2.49E+07 1.89E+08 -2.72E+01 1.50E+09 7.20E+02 1.42E+03 2.66E-01 6.58E+03 2.99E+02 4.82E+02 0.00E+00 2.29E+03 4.16E-01 

Flower Pollination Algorithm 1.49E+03 1.03E+03 2.40E+01 2.92E+03 9.40E+00 1.47E+01 3.20E-02 6.43E+01 7.75E+01 6.90E+01 5.10E+00 2.78E+02 8.25E+00 

Genetic Algorithm 1.89E+03 1.04E+03 2.13E+02 4.96E+03 5.04E+00 8.00E+00 3.10E-02 3.69E+01 1.44E+01 1.83E+01 1.37E-01 1.03E+02 2.86E+00 

Grey Wolf Optimizer 2.37E+03 1.54E+03 2.13E+02 5.63E+03 1.87E+01 2.96E+01 6.70E-02 1.28E+02 6.63E+03 8.23E+03 9.07E+01 3.49E+04 3.55E+02 

Harmony Search 1.56E+05 8.66E+05 1.60E+02 6.20E+06 4.31E+00 6.99E+00 1.60E-02 3.03E+01 8.13E+01 9.96E+01 0.00E+00 6.73E+02 1.88E+01 

Particle Swarm Optimization 1.72E+03 1.12E+03 -3.24E+01 5.62E+03 5.63E+00 8.73E+00 4.20E-02 4.06E+01 1.66E+05 5.65E+05 1.82E+03 3.82E+06 2.95E+04 

Simulated Annealing 5.52E+08 2.81E+09 1.51E+02 1.59E+10 9.67E-02 1.11E-01 1.03E-03 3.79E-01 9.49E+01 6.39E+01 2.27E+01 2.69E+02 9.81E+02 

Tabu Search 6.58E+08 3.17E+09 1.11E+02 1.87E+10 2.21E-01 2.35E-01 1.10E-02 7.94E-01 5.77E+02 5.14E+02 2.89E+01 1.51E+03 7.01E+03 

Whale Optimization Algorithm 2.51E+04 1.79E+05 2.24E+02 1.42E+06 5.65E+00 8.40E+00 3.70E-02 3.59E+01 3.73E+03 1.30E+04 2.94E-02 9.68E+04 1.52E+03 

20D 

Ant Colony Optimization 2.65E+09 8.24E+09 4.62E+02 3.57E+10 5.11E+01 6.37E+01 3.71E-01 2.23E+02 1.85E+03 8.06E+02 0.00E+00 3.45E+03 3.62E+01 

Bat Algorithm 6.61E+09 1.89E+10 -2.62E+03 8.31E+10 1.03E+01 1.60E+01 1.64E-02 7.78E+01 5.03E+01 2.72E+02 0.00E+00 2.14E+03 4.87E+00 

Biogeography-Based Optimization 5.12E+09 1.64E+10 2.55E+03 9.25E+10 1.87E+01 2.66E+01 4.89E-02 1.14E+02 4.00E+04 5.07E+04 0.00E+00 2.41E+05 2.14E+03 

Cuckoo Search 2.19E+08 1.22E+09 -3.52E+03 8.52E+09 3.86E+02 7.26E+02 6.76E-02 3.29E+03 3.46E+03 1.79E+03 6.28E+02 8.95E+03 8.96E+00 

FFO (additional conditions OFF) 1.09E+09 5.71E+09 -5.30E+03 4.41E+10 1.12E+01 1.67E+01 2.69E-02 7.25E+01 9.78E+06 1.10E+07 3.31E+05 4.18E+07 8.73E+05 

FFO (additional conditions ON) 4.14E+09 1.36E+10 1.61E+03 8.26E+10 4.58E-01 4.52E-01 8.18E-03 2.13E+00 1.08E+06 8.76E+05 1.14E+05 4.05E+06 2.35E+06 

Firefly Algorithm 7.10E+09 2.00E+10 7.12E+02 9.67E+10 7.83E+02 1.46E+03 1.46E-01 6.43E+03 2.26E+03 4.21E+03 0.00E+00 2.21E+04 2.89E+00 

Flower Pollination Algorithm 1.13E+08 9.81E+08 -3.44E+03 9.29E+09 1.03E+01 1.55E+01 1.65E-02 7.08E+01 1.36E+03 5.65E+02 4.54E+02 2.80E+03 1.32E+02 

Genetic Algorithm 1.24E+09 7.11E+09 -1.72E+03 5.63E+10 6.42E+00 9.13E+00 2.55E-02 4.11E+01 4.70E+02 4.02E+02 5.16E+01 1.62E+03 7.32E+01 

Grey Wolf Optimizer 7.37E+08 3.09E+09 -9.46E+02 1.93E+10 2.06E+01 3.06E+01 3.25E-02 1.32E+02 4.25E+04 3.87E+04 3.35E+03 1.30E+05 2.06E+03 

Harmony Search 1.21E+09 5.96E+09 -4.65E+03 4.49E+10 5.16E+00 7.54E+00 1.69E-02 3.30E+01 2.85E+03 2.56E+03 0.00E+00 1.50E+04 5.53E+02 

Particle Swarm Optimization 2.97E+08 1.81E+09 -1.68E+03 1.54E+10 6.06E+00 8.65E+00 9.51E-03 3.73E+01 1.21E+05 1.79E+05 1.01E+04 1.24E+06 1.99E+04 

Simulated Annealing 4.98E+09 2.48E+10 -1.65E+03 1.71E+11 1.05E-01 1.14E-01 0.00E+00 4.56E-01 8.90E+02 7.58E+02 9.54E+00 2.63E+03 8.44E+03 

Tabu Search 3.90E+09 1.64E+10 -1.89E+03 1.05E+11 2.25E+00 2.34E+00 2.06E-02 7.89E+00 5.84E+02 5.05E+02 5.60E+01 1.77E+03 2.60E+02 

Whale Optimization Algorithm 3.11E+09 9.79E+09 1.58E+03 4.70E+10 5.91E+00 8.41E+00 1.57E-02 3.61E+01 1.84E+04 1.57E+04 6.51E+02 5.97E+04 3.12E+03 

50D 

Ant Colony Optimization 1.85E+10 5.18E+10 7.57E+03 2.09E+11 1.18E+02 1.45E+02 1.45E+00 5.02E+02 3.26E+03 1.34E+03 5.48E+02 6.52E+03 2.77E+01 

Bat Algorithm 3.69E+10 8.22E+10 -1.85E+03 3.27E+11 1.05E+01 1.55E+01 3.36E-02 8.09E+01 6.49E+01 2.63E+02 0.00E+00 1.84E+03 6.21E+00 

Biogeography-Based Optimization 2.92E+10 6.74E+10 7.83E+03 2.67E+11 2.08E+01 2.93E+01 8.32E-02 1.50E+02 6.94E+04 8.48E+04 0.00E+00 3.52E+05 3.33E+03 

Cuckoo Search 3.77E+09 1.99E+10 -6.37E+02 1.32E+11 3.94E+02 7.39E+02 9.99E-02 4.15E+03 8.57E+03 4.31E+03 2.15E+03 2.48E+04 2.17E+01 

FFO (additional conditions OFF) 9.99E+09 3.85E+10 -1.74E+03 2.37E+11 1.19E+01 1.77E+01 4.70E-02 9.02E+01 1.66E+07 1.96E+07 5.24E+05 8.41E+07 1.39E+06 

FFO (additional conditions ON) 2.45E+10 6.20E+10 8.85E+03 2.31E+11 5.04E-01 4.91E-01 1.42E-02 2.27E+00 1.71E+06 1.32E+06 1.81E+05 5.88E+06 3.39E+06 

Firefly Algorithm 3.71E+10 7.91E+10 8.31E+03 2.75E+11 8.20E+02 1.53E+03 2.12E-01 8.64E+03 2.75E+03 6.27E+03 0.00E+00 4.05E+04 3.35E+00 

Flower Pollination Algorithm 9.95E+08 6.53E+09 -1.77E+03 5.87E+10 1.08E+01 1.61E+01 3.27E-02 8.78E+01 3.30E+03 1.33E+03 3.62E+02 6.91E+03 3.05E+02 

Genetic Algorithm 1.03E+10 4.35E+10 -3.59E+03 3.07E+11 7.94E+00 1.09E+01 4.99E-02 5.24E+01 1.08E+03 9.81E+02 1.00E+02 3.82E+03 1.36E+02 

Grey Wolf Optimizer 3.80E+09 1.38E+10 2.07E+03 8.35E+10 2.15E+01 3.22E+01 7.34E-02 1.71E+02 6.80E+04 6.53E+04 5.60E+03 2.49E+05 3.15E+03 

Harmony Search 9.83E+09 3.29E+10 -7.79E+03 2.09E+11 5.66E+00 7.96E+00 4.68E-02 4.25E+01 5.24E+03 4.16E+03 0.00E+00 2.22E+04 9.26E+02 

Particle Swarm Optimization 2.04E+09 1.02E+10 -2.89E+03 7.03E+10 6.36E+00 9.28E+00 3.11E-02 4.93E+01 2.78E+05 6.00E+05 1.68E+04 5.13E+06 4.37E+04 

Simulated Annealing 2.35E+10 7.58E+10 1.72E+03 3.82E+11 1.09E-01 1.24E-01 0.00E+00 5.94E-01 2.07E+03 1.84E+03 4.15E+01 6.29E+03 1.91E+04 

Tabu Search 3.13E+10 8.78E+10 -3.73E+03 3.94E+11 5.59E+00 6.11E+00 6.74E-02 2.30E+01 8.88E+02 9.18E+02 6.63E+01 2.73E+03 1.59E+02 

Whale Optimization Algorithm 1.34E+10 3.27E+10 8.56E+03 1.30E+11 6.11E+00 8.77E+00 1.22E-02 4.60E+01 2.97E+04 2.56E+04 8.29E+02 8.30E+04 4.85E+03 

1041 

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.  

 

Please cite this paper as:  

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and 

Applications. https://doi.org/10.1007/s00521-025-11074-z.  

 

50 

 

 1042 

 1043 

(a) At 2D 1044 
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(b) At 20D 1047 
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 1049 

(c) At 50D 1050 

Fig. 10 Results on CEC 2020 functions at 2D, 20D, and 50D 1051 
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Real engineering problems  1052 

The CEC benchmark suit also contains several constraints and real engineering problems 1053 

commonly used in the benchmarking analysis. As such, five additional engineering problems were 1054 

examined herein. Table 6 lists these problems and their characteristics. It should be noted that the 1055 

mathematical derivation for these problems is not included herein for brevity, yet it can be easily 1056 

accessible from the original source of CEC 2020, as well as in [67]. The Friedman and Wilcoxon 1057 

non-parametric statistical tests were carried out for each problem individually. Each problem was 1058 

run with the following settings: Agents [25, 50, 100] and iterations [25, 100, 100]. Table 7 and 1059 

Fig. 11 show the outcome of this analysis as well as a comparative history run for the three-bar 1060 

truss design problem. Overall, it can be seen that the proposed algorithm has a decent performance, 1061 

ranking within the top 5 spots in each problem (and first on the distance covered), with its best 1062 

performance recorded on the three-bar truss design problem. This analysis also shows the need to 1063 

improve further and tune FFO to allow it to enhance its performance on real engineering problems.  1064 

Table 6 CEC 2020 engineering problems.  1065 

No. Functions 
No. of 

constraints 
Objective/Remark 

10 Process flow sheeting problem 3 Minimize the flow sheeting process  

17 Tension/Compression spring design 4 Optimize the weight of a spring 

18 Pressure vessel design 4 Optimize the welding cost, material, and forming  

19 Three-bar truss design problem 3 Minimize the weight of the bar structures 

 1066 
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Table 7 Results on engineering problems  (Ranks are based on fitness)  1067 
Tension/Compression spring design 

Algorithm 
Max Iterations: 25, Agents: 25 Max Iterations: 100, Agents: 50 Max Iterations: 500, Agents: 100 

Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean 

BA 11 0.0351 6.0900 0.1800 11 0.0714 0.5600 0.0501 13 966229.5285 0.0900 0.0000 

BBO 12 0.1346 12.4000 304.4317 9 0.0232 1.1500 296.3512 12 900872.9867 0.2000 0.0000 

CS 5 0.0130 283.8200 0.9638 7 0.0161 13.4600 16.7597 7 0.0347 1.1400 3.8306 

FFO (conditions OFF) 2 0.0127 6.5400 104755.4358 6 0.0157 0.6100 24247.5107 8 0.0348 0.0800 2769.1185 

FFO (conditions ON) 8 0.0152 0.6800 22753.4404 8 0.0167 0.2900 9874.0739 6 0.0184 0.0800 2896.5719 

FA 4 0.0127 592.9600 15.4207 4 0.0140 27.9600 15.5375 4 0.0150 2.0400 29.8529 

FPA 3 0.0127 6.5900 5.8156 2 0.0127 0.5800 6.8138 3 0.0140 0.0800 5.9666 

GA 7 0.0145 3.2400 10.7102 5 0.0157 0.3100 3.3469 10 55481.1184 0.0500 4.3979 

GWO 1 0.0127 12.5700 644.1331 3 0.0131 1.1400 150.7236 2 0.0138 0.2100 61.2991 

PSW 9 0.0156 3.7200 2870.0385 1 0.0127 0.3600 1362.2240 1 0.0135 0.0500 653.0028 

SA 6 0.0133 0.0300 11.0837 13 20016.2994 0.0100 3.7422 11 443221.9830 0.0000 2.5749 

TS 13 2763.4846 0.1000 179.8630 12 7800.8091 0.0200 29.3575 9 0.2461 0.0100 9.0047 

WOA 10 0.0169 3.9800 643.2659 10 0.0270 0.3600 181.7931 5 0.0161 0.0500 47.2800 

Pressure vessel design 

Algorithm 
Max Iterations: 25, Agents: 25 Max Iterations: 100, Agents: 50 Max Iterations: 500, Agents: 100 

Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean 

BA 10 27672.8778 0.0700 0.0141 11 30169.8352 0.5100 0.1832 8 8101.1895 5.6300 2.4383 

BBO 8 20177.3138 0.1400 651.7029 10 19536.3625 1.0900 0.0000 13 13435.2796 11.5400 16406.9804 

CS 3 8588.6665 0.8700 297.5321 1 6255.4730 12.0500 380.9517 2 6055.6658 250.7500 461.4131 

FFO (conditions OFF) 6 16238.2724 0.0900 79738.3119 7 13338.4993 0.5500 528538.3793 3 6058.6276 6.0300 3550676.4451 

FFO (conditions ON) 7 19499.2357 0.0900 71257.3334 9 14521.7170 0.2600 266136.4509 10 10273.0019 0.8200 796115.0139 

FA 11 57102.8448 1.8100 0.0000 8 13490.6739 25.3300 62.4217 12 12401.2549 541.9300 123.3595 

FPA 5 15354.0109 0.0700 39.0251 2 6384.4138 0.5900 229.8373 4 6082.2291 5.8500 118.4741 

GA 9 21774.6840 0.0400 14.9825 6 11447.9394 0.2900 37.1125 5 6195.9443 2.9900 21.8192 

GWO 2 7770.6504 0.1300 437.6659 4 7325.6852 1.0400 1456.1620 1 6049.9952 11.2400 11543.6784 

PSW 1 6093.6822 0.0500 10362.2512 3 6767.6893 0.3300 22045.4224 6 7330.6288 3.5100 35351.4385 

SA 13 853026517754487000.0000 0.0000 20.7782 13 277802.5589 0.0100 85.2185 11 11584.2557 0.0300 167.9289 

TS 12 197045.3629 0.0100 13.2349 12 132269.8417 0.0300 58.0393 7 7336.3953 0.1800 226.9320 

WOA 4 12478.3154 0.0400 212.7318 5 10313.6550 0.3400 972.9236 9 9937.7694 3.6700 10364.2569 

Three-bar truss design problem 

Algorithm 
Max Iterations: 25, Agents: 25 Max Iterations: 100, Agents: 50 Max Iterations: 500, Agents: 100 

Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean 

BA 11 275.5093 0.4100 0.0113 3 263.9097 0.9600 0.0012 4 263.8950 10.1600 0.0435 

BBO 2 264.1611 0.8100 0.0000 10 265.4840 1.8100 0.0000 8 264.8880 19.1400 84.4678 

CS 6 268.3153 4.9800 0.6687 5 264.5199 24.0400 0.4967 6 264.1509 439.9200 0.4726 

FFO (conditions OFF) 3 264.3765 0.2700 284.0285 4 264.0866 0.8900 1761.7764 2 263.8919 10.4300 8258.9518 

FFO (conditions ON) 5 266.2357 0.2600 314.5034 6 264.6600 0.4200 926.2980 5 264.1359 0.8500 1930.4116 

FA 1 264.0344 9.1500 0.2640 2 263.9003 53.0000 0.2236 3 263.8926 952.0100 0.0785 

FPA 8 269.5027 0.5800 0.7339 7 264.6662 0.9300 0.0294 7 264.2540 10.3400 0.2196 

GA 7 268.8947 0.1200 0.0072 8 264.6835 0.4600 0.0142 9 265.1644 4.8600 0.3835 

GWO 12 282.8427 0.7400 0.0157 12 282.8427 1.8100 2.8466 13 282.8402 18.4800 3.3070 

PSW 4 265.8990 0.1600 75.3812 1 263.8915 0.5400 172.3326 1 263.8915 5.9400 402.4285 

SA 12 282.8427 0.0000 3.2932 12 282.8427 0.0100 3.3107 12 272.4788 0.0500 4.3317 

TS 10 272.5299 0.0100 4.2519 12 282.8427 0.0200 20.3575 10 267.1915 0.1100 91.2797 

WOA 9 270.1763 0.4000 1.0332 9 264.7512 0.6200 3.1695 11 267.9062 5.9900 2.2217 

Process flow sheeting problem 

Algorithm 
Max Iterations: 25, Agents: 25 Max Iterations: 100, Agents: 50 Max Iterations: 500, Agents: 100 

Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean 

BA 12 69813.0780 0.3500 0.0000 12 2711.2231 0.7600 0.2014 5 1.2507 6.8500 0.5123 

BBO 13 158420.4126 1.3600 8.6180 13 10149.9007 1.4100 22.3039 13 14285.1378 15.5600 0.0000 

CS 6 16.4045 5.7400 0.0989 5 1.3677 16.5000 0.8389 6 1.2510 325.9700 0.4688 

FFO (conditions OFF) 8 667.6444 0.3500 744.3846 7 1.4775 0.7100 4498.6072 2 1.2500 8.1900 21269.7306 

FFO (conditions ON) 9 1542.7608 0.2700 701.7935 2 1.2500 0.5400 3816.3316 10 2.3309 1.0200 7224.1551 

FA 3 1.2526 8.8700 0.1592 3 1.2501 37.6700 0.2927 3 1.2500 716.7600 1.1939 

FPA 4 8.7331 0.2300 1.4028 6 1.4384 0.6400 0.9795 9 1.2690 8.2700 0.6424 

GA 7 56.1340 0.0900 1.3388 8 8.7747 0.3700 0.3217 7 1.2573 4.7700 0.6688 

GWO 2 1.2509 0.8400 0.4131 4 1.2504 1.2700 1.2805 4 1.2500 14.3800 4.8077 

PSW 1 1.2500 0.1300 114.8741 1 1.2500 0.3900 177.3422 1 1.2500 4.0700 378.2226 

SA 11 8200.0204 0.0000 0.3118 10 26.0589 0.0100 3.1196 11 248.9490 0.0400 3.4190 

TS 10 5914.7086 0.0100 1.9175 9 18.0536 0.0200 13.5297 8 1.2597 0.1500 48.5607 

WOA 5 14.0063 0.1200 6.2861 11 1880.2030 0.5200 6.9295 12 1245.9236 4.6700 25.7932 
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(a) Tension/Compression spring design 1071 
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(b) Pressure vessel design 1073 

 1074 

(c) Three-bar truss design problem 1075 
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(d) Process flow sheeting problem 1077 

Fig. 11 Rankings on real engineering problems 1078 

Future research needs 1079 

In order to further examine the performance of the proposed algorithm, we present a new set of 1080 

results (see Fig. 12). In this analysis, we focus on function attributes like continuity, separability, 1081 

multimodality, differentiability, and performance in continuous function optimization are 1082 

demonstrated. The plots assess performance based on the average of metrics and visually display 1083 

how each algorithm performs across these attributes under the specific settings.  1084 

This figure shows results produced by filtering for specific settings (Iterations=1000, Agents=100) 1085 

and merging these results with predefined function attributes. These plots reveal distinct 1086 

performance characteristics that generally show more modest peaks across the attributes, 1087 

suggesting that some algorithms perform better in handling specific functions (i.e., Separable 1088 

functions). For example, the FFO algorithm ranks first and fifth in continuous functions, first and 1089 

fourth in differentiable and non-differentiable, second and sixth on multimodal and non-1090 

multimodal functions, fifth in scalable and non-scalable functions, and eighth and fifth on 1091 

separable and non-separable functions.  1092 

These insights, together with those gained from the testing on real engineering problems, can also 1093 

provide technical improvement areas for FFO (as well as the selected algorithms). For example, 1094 

FFO could focus on enhancing its performance in non-separable and multimodal landscapes, 1095 

perhaps by integrating more adaptive search strategies or improving its handling of function 1096 

differentiability through better derivative estimation or step size adjustment mechanisms. 1097 

Additionally, efforts to boost scalability could be crucial, especially for handling higher-1098 

dimensional optimization problems more effectively. In addition, there is a need to further examine 1099 

the proposed algorithms against some of the recently developed algorithms (namely, SASS, 1100 

COLSHADE, sCMAGES). At the moment, the performance of FFO can indeed be improved to 1101 

match it with the aim of further enhancing it against the aforementioned leading algorithms. In 1102 

addition, the authors hope that future editions from FFO include multi- and many-objective 1103 

optimization capabilities.  1104 
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 1109 

Fig. 11 Comparison of algorithms for function categories 1110 

6.0 Conclusions 1111 

The Firefighter optimization (FFO) algorithm offers a metaheuristic approach for optimization. This 1112 

algorithm was examined against 13 commonly used optimization algorithms and 38 functions 1113 

(including benchmark functions, CEC 2020 standard functions, and real engineering problems). 1114 

Our results demonstrate that in 2D analysis, FFO ranks in the top 3 slots in terms of the best fitness 1115 

and space covered and ranks first in the Distance per Unit Time metric. Similarly, the performance 1116 

of the FFO algorithm also ranks third in higher dimensions (20D and 50D) and maintains a top 5 1117 

performance across various metrics. Our analysis also indicates a few possible means to improve 1118 

the performance of FFO, primarily on scalable/non-scalable functions and separable/non-separable 1119 

functions, as well as on performing on real optimization problems. 1120 
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Some or all data, models, or code that support the findings of this study are available from the 1122 

corresponding author upon reasonable request.  1123 

Firefighter optimization (FFO) can be accessed from [to be added]. 1124 

Conflict of Interest  1125 

The authors declare no conflict of interest.  1126 

References 1127 

[1] S.S. Rao, Engineering optimization: Theory and practice, 2019. 1128 

https://doi.org/10.1002/9781119454816. 1129 

[2] J. Silberholz, B. Golden, Comparison of Metaheuristics, in: 2010. 1130 

https://doi.org/10.1007/978-1-4419-1665-5_21. 1131 

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.  

 

Please cite this paper as:  

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and 

Applications. https://doi.org/10.1007/s00521-025-11074-z.  

 

62 

 

[3] A. Alorf, A survey of recently developed metaheuristics and their comparative analysis, 1132 

Eng. Appl. Artif. Intell. (2023). https://doi.org/10.1016/j.engappai.2022.105622. 1133 

[4] R.M. Lewis, V. Torczon, M.W. Trosset, Direct search methods: Then and now, J. Comput. 1134 

Appl. Math. 124 (2000) 191–207. https://doi.org/10.1016/S0377-0427(00)00423-4. 1135 

[5] T. Guilmeau, E. Chouzenoux, V. Elvira, Simulated Annealing: A Review and a New 1136 

Scheme, in: IEEE Work. Stat. Signal Process. Proc., 2021. 1137 

https://doi.org/10.1109/SSP49050.2021.9513782. 1138 

[6] X.C. Pardo, P. González, J.R. Banga, R. Doallo, Population based metaheuristics in Spark: 1139 

Towards a general framework using PSO as a case study, Swarm Evol. Comput. (2024). 1140 

https://doi.org/10.1016/j.swevo.2024.101483. 1141 

[7] D. Caicedo, L. Lara-Valencia, Y. Valencia, Machine Learning Techniques and Population-1142 

Based Metaheuristics for Damage Detection and Localization Through Frequency and 1143 

Modal-Based Structural Health Monitoring: A Review, Arch. Comput. Methods Eng. 1144 

(2022). https://doi.org/10.1007/s11831-021-09692-6. 1145 

[8] A. Bavar, A. Bavar, F. Gholian-Jouybari, M. Hajiaghaei-Keshteli, C. Mejía-Argueta, 1146 

Developing new heuristics and hybrid meta-heuristics to address the bi-objective home 1147 

health care problem, Cent. Eur. J. Oper. Res. (2023). https://doi.org/10.1007/s10100-023-1148 

00862-4. 1149 

[9] X. Guo, J. Hu, H. Yu, M. Wang, B. Yang, A new population initialization of metaheuristic 1150 

algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature 1151 

selection, Comput. Biol. Med. (2023). https://doi.org/10.1016/j.compbiomed.2023.107538. 1152 

[10] A. Gogna, A. Tayal, Metaheuristics: Review and application, J. Exp. Theor. Artif. Intell. 1153 

(2013). https://doi.org/10.1080/0952813X.2013.782347. 1154 

[11] K. Rajwar, K. Deep, S. Das, An exhaustive review of the metaheuristic algorithms for 1155 

search and optimization: taxonomy, applications, and open challenges, Artif. Intell. Rev. 1156 

(2023). https://doi.org/10.1007/s10462-023-10470-y. 1157 

[12] R. Sala, R. Müller, Benchmarking for Metaheuristic Black-Box Optimization: Perspectives 1158 

and Open Challenges. (arXiv:2007.00541v1 [cs.NE]), ArXiv Comput. Sci. (2020). 1159 

[13] K.-L. Du, M.N.S. Swamy, Search and Optimization by Metaheuristics, 2016. 1160 

https://doi.org/10.1007/978-3-319-41192-7. 1161 

[14] A. Beşkirli, İ. Dağ, M.S. Kıran, A tree seed algorithm with multi-strategy for parameter 1162 

estimation of solar photovoltaic models, Appl. Soft Comput. 167 (2024) 112220. 1163 

https://doi.org/10.1016/J.ASOC.2024.112220. 1164 

[15] A. Beşkirli, İ. Dağ, I-CPA: An Improved Carnivorous Plant Algorithm for Solar 1165 

Photovoltaic Parameter Identification Problem, Biomimetics. (2023). 1166 

https://doi.org/10.3390/biomimetics8080569. 1167 

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.  

 

Please cite this paper as:  

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and 

Applications. https://doi.org/10.1007/s00521-025-11074-z.  

 

63 

 

[16] Q. Li, X. Zeng, W. Wei, Multi-objective particle swarm optimization algorithm using 1168 

Cauchy mutation and improved crowding distance, Int. J. Intell. Comput. Cybern. (2023). 1169 

https://doi.org/10.1108/IJICC-04-2022-0118. 1170 

[17] F.S. Gharehchopogh, Advances in Tree Seed Algorithm: A Comprehensive Survey, Arch. 1171 

Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-021-09698-0. 1172 

[18] C. Qu, W. He, X. Peng, X. Peng, Harris Hawks optimization with information exchange, 1173 

Appl. Math. Model. (2020). https://doi.org/10.1016/j.apm.2020.03.024. 1174 

[19] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A.H. Gandomi, The Arithmetic 1175 

Optimization Algorithm, Comput. Methods Appl. Mech. Eng. (2021). 1176 

https://doi.org/10.1016/j.cma.2020.113609. 1177 

[20] M. Shehab, I. Mashal, Z. Momani, M.K.Y. Shambour, A. AL-Badareen, S. Al-Dabet, N. 1178 

Bataina, A.R. Alsoud, L. Abualigah, Harris Hawks Optimization Algorithm: Variants and 1179 

Applications, Arch. Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-022-1180 

09780-1. 1181 

[21] M. Dorigo, M. Birattari, T. Stützle, Ant colony optimization artificial ants as a 1182 

computational intelligence technique, IEEE Comput. Intell. Mag. (2006). 1183 

https://doi.org/10.1109/CI-M.2006.248054. 1184 

[22] J.E. Bell, P.R. McMullen, Ant colony optimization techniques for the vehicle routing 1185 

problem, Adv. Eng. Informatics. (2004). https://doi.org/10.1016/j.aei.2004.07.001. 1186 

[23] X.S. Yang, A.H. Gandomi, Bat algorithm: A novel approach for global engineering 1187 

optimization, Eng. Comput. (Swansea, Wales). (2012). 1188 

https://doi.org/10.1108/02644401211235834. 1189 

[24] P.W. Tsai, J.S. Pan, B.Y. Liao, M.J. Tsai, V. Istanda, Bat algorithm inspired algorithm for 1190 

solving numerical optimization problems, in: Appl. Mech. Mater., 2012. 1191 

https://doi.org/10.4028/www.scientific.net/AMM.148-149.134. 1192 

[25] D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput. (2008). 1193 

https://doi.org/10.1109/TEVC.2008.919004. 1194 

[26] R.A. Gupta, R. Kumar, A.K. Bansal, BBO-based small autonomous hybrid power system 1195 

optimization incorporating wind speed and solar radiation forecasting, Renew. Sustain. 1196 

Energy Rev. (2015). https://doi.org/10.1016/j.rser.2014.09.017. 1197 

[27] X.S. Yang, S. Deb, Cuckoo search via Lévy flights, in: 2009 World Congr. Nat. Biol. 1198 

Inspired Comput. NABIC 2009 - Proc., 2009. 1199 

https://doi.org/10.1109/NABIC.2009.5393690. 1200 

[28] A.H. Gandomi, X.S. Yang, A.H. Alavi, Cuckoo search algorithm: A metaheuristic approach 1201 

to solve structural optimization problems, Eng. Comput. (2013). 1202 

https://doi.org/10.1007/s00366-011-0241-y. 1203 

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.  

 

Please cite this paper as:  

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and 

Applications. https://doi.org/10.1007/s00521-025-11074-z.  

 

64 

 

[29] X.-S. Yang, A. Slowik, Firefly Algorithm, Swarm Intell. Algorithms. (2020) 163–174. 1204 

https://doi.org/10.1201/9780429422614-13. 1205 

[30] H. Xie, L. Zhang, C.P. Lim, Y. Yu, C. Liu, H. Liu, J. Walters, Improving K-means 1206 

clustering with enhanced Firefly Algorithms, Appl. Soft Comput. J. (2019). 1207 

https://doi.org/10.1016/j.asoc.2019.105763. 1208 

[31] X.S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: A novel approach for 1209 

multiobjective optimization, Eng. Optim. (2014). 1210 

https://doi.org/10.1080/0305215X.2013.832237. 1211 

[32] S. Lalljith, I. Fleming, U. Pillay, K. Naicker, Z.J. Naidoo, A.K. Saha, Applications of 1212 

Flower Pollination Algorithm in Electrical Power Systems: A Review, IEEE Access. 1213 

(2022). https://doi.org/10.1109/ACCESS.2021.3138518. 1214 

[33] J.H. Holland, Adaptation in natural and artificial systems : an introductory analysis with 1215 

applications to biology, control, and artificial intelligence, 1975. 1216 

[34] S. Ansari, K.A. Alnajjar, M. Saad, S. Abdallah, A.A. El-Moursy, Automatic Digital 1217 

Modulation Recognition Based on Genetic-Algorithm-Optimized Machine Learning 1218 

Models, IEEE Access. (2022). https://doi.org/10.1109/ACCESS.2022.3171909. 1219 

[35] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw. (2014). 1220 

https://doi.org/10.1016/j.advengsoft.2013.12.007. 1221 

[36] Z.W. Geem, J.H. Kim, G. V. Loganathan, A New Heuristic Optimization Algorithm: 1222 

Harmony Search, Simulation. (2001). https://doi.org/10.1177/003754970107600201. 1223 

[37] J. Kennedy, R. Eberhart, Particle swarm optimization, Proc. ICNN’95 - Int. Conf. Neural 1224 

Networks. 4 (n.d.) 1942–1948. https://doi.org/10.1109/ICNN.1995.488968. 1225 

[38] F. Marini, B. Walczak, Particle swarm optimization (PSO). A tutorial, Chemom. Intell. Lab. 1226 

Syst. (2015). https://doi.org/10.1016/j.chemolab.2015.08.020. 1227 

[39] P. Siarry, Simulated annealing, in: Metaheuristics, 2016. https://doi.org/10.1007/978-3-1228 

319-45403-0_2. 1229 

[40] W.L. Goffe, G.D. Ferrier, J. Rogers, Global optimization of statistical functions with 1230 

simulated annealing, J. Econom. (1994). https://doi.org/10.1016/0304-4076(94)90038-8. 1231 

[41] F. Glover, Tabu Search—Part I, ORSA J. Comput. (1989). 1232 

https://doi.org/10.1287/ijoc.1.3.190. 1233 

[42] A. Alfieri, C. Castiglione, E. Pastore, A multi-objective tabu search algorithm for product 1234 

portfolio selection: A case study in the automotive industry, Comput. Ind. Eng. (2020). 1235 

https://doi.org/10.1016/j.cie.2020.106382. 1236 

[43] S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Softw. (2016). 1237 

https://doi.org/10.1016/j.advengsoft.2016.01.008. 1238 

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.  

 

Please cite this paper as:  

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and 

Applications. https://doi.org/10.1007/s00521-025-11074-z.  

 

65 

 

[44] N. Rana, M.S.A. Latiff, S.M. Abdulhamid, H. Chiroma, Whale optimization algorithm: a 1239 

systematic review of contemporary applications, modifications and developments, Neural 1240 

Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04849-z. 1241 

[45] C. Wei, Y. Li, Y. Yu, Solution of ackley function based on particle swarm optimization 1242 

algorithm, in: Proc. 2020 IEEE Int. Conf. Adv. Electr. Eng. Comput. Appl. AEECA 2020, 1243 

2020. https://doi.org/10.1109/AEECA49918.2020.9213634. 1244 

[46] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, A novel population initialization method 1245 

for accelerating evolutionary algorithms, Comput. Math. with Appl. (2007). 1246 

https://doi.org/10.1016/j.camwa.2006.07.013. 1247 

[47] P.R.D. Marinho, R.B. Silva, M. Bourguignon, G.M. Cordeiro, S. Nadarajah, 1248 

AdequacyModel: An R package for probability distributions and general purpose 1249 

optimization, PLoS One. (2019). https://doi.org/10.1371/journal.pone.0221487. 1250 

[48] E.J. Solteiro Pires, J.A. Tenreiro MacHado, P.B. De Moura Oliveira, J. Boaventura Cunha, 1251 

L. Mendes, Particle swarm optimization with fractional-order velocity, Nonlinear Dyn. 1252 

(2010). https://doi.org/10.1007/s11071-009-9649-y. 1253 

[49] M. Molga, C. Smutnicki, Test functions for optimization needs, Test Funct. Optim. Needs. 1254 

(2005). 1255 

[50] J.M. Czerniak, H. Zarzycki, Artificial Acari Optimization as a new strategy for global 1256 

optimization of multimodal functions, J. Comput. Sci. (2017). 1257 

https://doi.org/10.1016/j.jocs.2017.05.028. 1258 

[51] D. Whitley, S. Rana, J. Dzubera, K.E. Mathias, Evaluating evolutionary algorithms, Artif. 1259 

Intell. (1996). https://doi.org/10.1016/0004-3702(95)00124-7. 1260 

[52] A.A. Goldstein, J.F. Price, On descent from local minima, Math. Comput. (1971). 1261 

https://doi.org/10.1090/s0025-5718-1971-0312365-x. 1262 

[53] A.O. Griewank, Generalized descent for global optimization, J. Optim. Theory Appl. 1263 

(1981). https://doi.org/10.1007/BF00933356. 1264 

[54] D.M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, 1972. 1265 

[55] S.K. Mishra, Global Optimization by Differential Evolution and Particle Swarm Methods: 1266 

Evaluation on Some Benchmark Functions, SSRN Electron. J. (2011). 1267 

https://doi.org/10.2139/ssrn.933827. 1268 

[56] J. Matyas, Random Optimization, Autom. i Telemekh. (1965). 1269 

[57] Z. Michalewicz, A Survey of Constraint Handling Techniques in Evolutionary Computation 1270 

Methods, in: Evol. Program. IV, 2020. https://doi.org/10.7551/mitpress/2887.003.0018. 1271 

[58] A. Omeradzic, H.G. Beyer, Convergence Properties of the (μ/μI, λ)-ES on the Rastrigin 1272 

Function, in: FOGA 2023 - Proc. 17th ACM/SIGEVO Conf. Found. Genet. Algorithms, 1273 

2023. https://doi.org/10.1145/3594805.3607126. 1274 

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z


This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.  

 

Please cite this paper as:  

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and 

Applications. https://doi.org/10.1007/s00521-025-11074-z.  

 

66 

 

[59] Y.-W.W. Shang, Y.-H.H. Qiu, A Note on the Extended Rosenbrock Function, Evol. 1275 

Comput. 14 (2006) 119–126. https://doi.org/10.1162/106365606776022733. 1276 

[60] P.C. Chou, J.L. Chen, Enforced mutation to enhancing the capability of particle swarm 1277 

optimization algorithms, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. 1278 

Intell. Lect. Notes Bioinformatics), 2011. https://doi.org/10.1007/978-3-642-21515-5_4. 1279 

[61] A. Tripathy, H.-P. Schwefel, Numerical Optimization of Computer Models, J. Oper. Res. 1280 

Soc. (1982). https://doi.org/10.2307/2581158. 1281 

[62] M.A. Styblinski, T.S. Tang, Experiments in nonconvex optimization: Stochastic 1282 

approximation with function smoothing and simulated annealing, Neural Networks. (1990). 1283 

https://doi.org/10.1016/0893-6080(90)90029-K. 1284 

[63] T. Malik, E.H. Winer, An analytical curve based approach for multi-modal optimization, 1285 

in: 9th AIAA/ISSMO Symp. Multidiscip. Anal. Optim., 2002. 1286 

https://doi.org/10.2514/6.2002-5520. 1287 

[64] J. Carrasco, S. García, M.M. Rueda, S. Das, F. Herrera, Recent trends in the use of statistical 1288 

tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and 1289 

a critical review, Swarm Evol. Comput. (2020). 1290 

https://doi.org/10.1016/j.swevo.2020.100665. 1291 

[65] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric 1292 

statistical tests as a methodology for comparing evolutionary and swarm intelligence 1293 

algorithms, Swarm Evol. Comput. (2011). https://doi.org/10.1016/j.swevo.2011.02.002. 1294 

[66] C.T. Yue, Problem Defnitions and Evaluation Criteria for the CEC 2020 Special Session 1295 

and Competition on Single Objective Bound Constrained Numerical Optimization, 2020. 1296 

[67] CEC2020-Algorithms/test_functions/cec2020_constrained.py at main · strzecha/CEC2020-1297 

Algorithms · GitHub, (n.d.). https://github.com/strzecha/CEC2020-1298 

Algorithms/blob/main/test_functions/cec2020_constrained.py#L390 (accessed August 23, 1299 

2024). 1300 

 1301 

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

