
This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

1

The Firefighter Algorithm for Optimization Problems 1

M.Z. Naser1,2, Ahmad Z. Naser3 2
1School of Civil & Environmental Engineering and Earth Sciences (SCEEES), Clemson University, USA 3

2Artificial Intelligence Research Institute for Science and Engineering (AIRISE), Clemson University, USA 4
E-mail: mznaser@clemson.edu, Website: www.mznaser.com 5

3Department of Mechanical Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada 6

Email: naser@umanitoba.ca 7

Abstract 8

This paper presents the Firefighter Optimization (FFO) algorithm as a new metaheuristic for 9

optimization problems that stems inspiration from the collaborative strategies often deployed by 10

firefighters in firefighting activities. Such strategies include adaptive response to changing 11

conditions, coordination among multiple firefighters (i.e., agents) to converge on a common goal, 12

balancing exploration and exploitation by maintaining diversity within the search space and 13

adapting its parameters to navigate complex landscapes. To evaluate the performance of FFO, 14

extensive experiments were conducted, wherein the FFO was examined against 13 commonly used 15

optimization algorithms, namely, the Ant Colony Optimization (ACO), Bat Algorithm (BA), 16

Biogeography-Based Optimization (BBO), Flower Pollination Algorithm (FPA), Genetic 17

Algorithm (GA), Grey Wolf Optimizer (GWO), Harmony Search (HS), Particle Swarm 18

Optimization (PSO), Simulated Annealing (SA), Tabu Search (TS), and Whale Optimization 19

Algorithm (WOA), and across 24 benchmark functions, as well as 10 standard functions and 4 real 20

engineering problems from the CEC 2020 suite. The results demonstrate that FFO achieves 21

comparative performance and, in some scenarios, outperforms commonly adopted optimization 22

algorithms in terms of the obtained fitness, time taken for exaction, and research space covered 23

per unit of time. More specifically, FFO ranked first in the Distance per Unit Time metric and 24

maintained a top 5 performance in higher dimensions (i.e., 20D and 50D). 25

Keywords: Optimization; Benchmarking; Metaheuristics. 26

1.0 Introduction 27

Metaheuristics play a large role in the domain of optimization. These algorithms have been 28

renowned for their efficacy in tackling complex and multidimensional problems that can typically 29

be beyond the reach of traditional methods [1]. Metaheuristics are distinguished by their flexibility 30

and robustness, making them particularly suitable for problems where the solution landscape is 31

rugged or poorly defined, such as those expected across diverse disciplines, ranging from 32

engineering and logistics to economics and data science [2]. For example, metaheuristics' 33

versatility enables their engineering application to optimize design parameters for complex 34

systems. In logistics, metaheuristics can help solve scheduling and routing problems. Similarly, 35

metaheuristics can prove beneficial in finance systems to optimize investment portfolios, to name 36

a few. 37

Metaheuristics can be defined as high-level strategies that coordinate simpler investigative 38

methodologies to explore and exploit the search space efficiently [3]. These strategies are 39

characterized by their reliance on processes that promote some form of balance between 40

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z
mailto:mznaser@clemson.edu
http://www.mznaser.com/
mailto:naser@umanitoba.ca

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

2

exploration of the search space to avoid entrapment in local optima and exploitation mechanisms 41

that refine promising areas to converge toward global optima [4]. Thus, metaheuristics can be 42

thought of as generic and adaptable to a broad spectrum of problems with minimal modification. 43

This can be advantageous to problem-specific algorithms. 44

Metaheuristics are broadly classified into two categories based on their approach: single-solution 45

based and population-based. Single-solution metaheuristics iteratively improve a single candidate 46

solution. These algorithms capitalize on the collective intelligence of the population to explore and 47

exploit the search space more broadly. Some such metaheuristics include Simulated Annealing 48

(SA) and Tabu Search (TS) [5]. This group of algorithms employs mechanisms to escape local 49

optima, like probabilistic acceptance of worse solutions in SA or using memory structures in TS 50

to avoid revisiting previously explored areas of the search space. The efficiency of single-solution 51

metaheuristics is tied to their ability to fine-tune a solution through mechanisms like adaptive 52

neighborhood searches and intensification strategies that home in on promising regions of the 53

search space [5]. 54

On the other hand, population-based metaheuristics evolve a group (i.e., population) of solutions 55

to leverage interactions within this group to explore and exploit the search space collectively [6]. 56

Some examples under this group include Genetic Algorithms (GA) and Particle Swarm 57

Optimization (PSO). Such algorithms can maintain diversity within the population and avoid 58

premature convergence to suboptimal solutions. For instance, GA employs operators such as 59

crossover and mutation to introduce variability and ensure robust exploration, while PSO mimics 60

social behaviors of swarms [7]. These two examples can balance exploration and exploitation 61

through the dynamic adjustment of particle velocities based on individual and collective 62

experiences. This population-based approach enables these algorithms to effectively navigate 63

complex, multimodal optimization landscapes by simultaneously exploring multiple regions of the 64

search space, increasing the likelihood of finding a global optimum. It goes without saying that 65

hybrid approaches that combine elements from both single-solution and population-based 66

metaheuristics have emerged as a means to leverage the strengths of both strategies [8]. These 67

hybrid methods often incorporate mechanisms like adaptive parameter control, multi-stage search 68

processes, and cooperative co-evolution to enhance performance on a wide range of optimization 69

problems [9]. 70

Similarly, metaheuristics can also be classified based on their source of inspiration. Some 71

metaheuristics are nature-inspired algorithms, wherein they are inspired by natural phenomena, 72

biological processes, or behaviors observed in animals/plants. These nature-inspired algorithms 73

often mimic survival mechanisms, evolutionary processes, or social behaviors. For example, GA, 74

PSO, and Ant Colony Optimization (ACO) are representative of such classification. Then, some 75

metaheuristics draw inspiration from human behaviors, the physical world, and societal structures. 76

For instance, both TS and SA incorporate actions and behaviors seen in humans (i.e., memory) 77

and physical processes (i.e., annealing in metallurgy) [10]. 78

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

3

Despite their versatility and ease of use, metaheuristics can suffer from challenges [11]. One such 79

challenge is drawing a balance between exploration and exploitation capabilities. These 80

capabilities can be crucial for avoiding premature convergence and ensuring the global optimum 81

is reached. Moreover, the stochastic nature of these algorithms often requires multiple runs to 82

achieve consistent results, which can be computationally expensive [12]. Fortunately, the field of 83

metaheuristics continues to grow in response to addressing increasingly complex problems 84

[13,14]. One notable trend is the hybridization of metaheuristic algorithms, where two or more 85

distinct strategies are combined to exploit their complementary strengths. For instance, hybrid 86

algorithms might combine one algorithm's explorative power with another's intensive exploitation 87

capabilities. Such hybridization can potentially yield solutions that are both diverse and precise. 88

Further, recent studies have proposed novel metaheuristic algorithms such as the Improved 89

Crowding Particle Algorithm (I-CPA) and the Tree Seed Algorithm (TSA) [15]. For instance, I-90

CPA has been applied to optimize engineering design problems with multi-objectives and complex 91

constraints, improving the balance between exploration and exploitation [16]. Similarly, TSA, 92

inspired by tree seed dispersal mechanisms, has been successfully used in solving scheduling and 93

resource allocation problems [17]. These advancements highlight the ongoing evolution and 94

diversification of metaheuristic algorithms and showcase their adaptability to various domains. In 95

addition to these recent advancements, other metaheuristics such as the Harris Hawks Optimization 96

(HHO) and the Arithmetic Optimization Algorithm (AOA) have gained attention due to their 97

robust performance across a variety of domains [18,19]. HHO, inspired by the cooperative hunting 98

strategy of Harris hawks, has been applied to challenging problems, including engineering, 99

medical, data mining and clustering [20]. AOA, based on arithmetic operations, has also shown 100

success in solving complex mathematical and engineering optimization problems. These emerging 101

algorithms further underline the potential of metaheuristics in addressing diverse optimization 102

challenges, contributing to a growing repository of tools designed to tackle specific industrial and 103

research needs [19]. 104

Still, as computational challenges grow and the need for efficient optimization strategies 105

intensifies, the role of metaheuristics becomes increasingly important and warranted. The ability 106

of metaheuristics to adapt and provide feasible and efficient solutions. The above motivates this 107

work wherein we propose a novel algorithm, Firefighter Optimization (FFO), for optimization 108

problems that could be applied in various areas (e.g., a general purpose algorithm). FFO is 109

motivated by the strategies and tactics employed by firefighters, such as the dynamic distribution 110

of resources, adaptive responses to evolving conditions, and coordinated efforts among multiple 111

firefighters (agents) to achieve a unified objective. FFO also balances exploration and exploitation 112

by maintaining diversity within the search space and adjusting its parameters to navigate complex 113

optimization challenges. A number of comparative experiments, supplemented with various 114

metrics, were carried out to validate the effectiveness and competitiveness of FFO. More 115

specifically, the performance of FFO and the other selected algorithms was examined across over 116

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

4

600 tests on a wide range of benchmark and test functions. Our experimental results demonstrate 117

the effectiveness and competitiveness of FFO compared to state-of-the-art algorithms. 118

The rest of the paper is organized as follows: Section 2 presents a description of FFO and explains 119

each component in detail. Sections 3 and 4 describe the aforementioned algorithms and 24 120

commonly used benchmarking test functions for various complexity levels. Finally, Sections 4 and 121

5 conclude the paper with a presentation of our comparative results and conclusions/findings 122

learned from our analysis. 123

2.0 Description of the Firefighter Optimization (FFO) algorithm 124

This section describes the FFO in more detail (see flowchart in Fig. 1). We start with a general 125

description and then dive into a more detailed analysis of FFO’s functions. 126

2.1 General description 127

The Firefighter optimization (FFO) algorithm is inspired by the strategies and tactics used by 128

firefighters to combat fires in real-world scenarios. In the face of a fire, firefighters must 129

strategically allocate resources, decide when to focus on extinguishing the flames, and when to 130

protect specific areas or perform rescue operations. More specifically, this optimization technique 131

draws from various aspects of firefighting, including the dynamic allocation of resources, adaptive 132

response to changing conditions, and coordination among multiple firefighters (i.e., agents) to 133

achieve a common goal. Further, the FFO algorithm is designed to balance exploration and 134

exploitation by maintaining diversity within the search space and adapting its parameters to 135

navigate complex optimization landscapes. See Table 1 for a comparison of this algorithm against 136

other commonly used in optimization. 137

Initialization: The algorithm starts by randomly initializing a population of agents within the 138

specified bounds of the search space. Each agent represents a potential solution to the optimization 139

problem. 140

Evaluation: Each agent's position is evaluated using the objective function, which measures the 141

fitness or quality of the solution. The best agent, i.e., the one with the lowest fitness value for 142

minimization problems, is identified as the global best solution. 143

Adaptive Local Search: The FFO algorithm employs an adaptive local search mechanism to refine 144

the positions of the agents. This process involves generating perturbations around the current 145

position of an agent and evaluating the new positions. The perturbations are adjusted adaptively 146

based on the agent's performance and the iteration count. This local search helps agents escape 147

local optima and explore the solution space more effectively. 148

Crossover and Mutation: To enhance diversity and promote exploration, the FFO algorithm 149

incorporates crossover and mutation operators. The crossover operator allows agents to exchange 150

information, creating new solutions by combining parts of two parent agents. The mutation 151

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

5

operator introduces random changes to an agent's position, providing an additional mechanism to 152

explore new areas of the search space. 153

Perturbation Mechanism: When agents fail to improve over a certain number of iterations, a 154

perturbation mechanism is triggered. This mechanism mimics the adaptive response of firefighters 155

to changing conditions. Agents undergo a larger perturbation, guided by the global best agent, to 156

move towards potentially better regions of the search space. The intensity of the perturbation 157

increases with the number of unsuccessful iterations, allowing the algorithm to escape stagnation 158

and continue searching for optimal solutions. 159

Adaptive Step Size: The step size used in the local search and perturbation mechanisms is 160

adaptively adjusted based on the algorithm's progress. If the algorithm detects stagnation, the step 161

size is increased to encourage exploration. Conversely, if the algorithm is converging towards a 162

solution, the step size is reduced to fine-tune the search and improve solution accuracy. 163

Cooling Schedule: The FFO algorithm incorporates a cooling schedule inspired by simulated 164

annealing. The temperature parameter, which controls the acceptance probability of worse 165

solutions during the local search, is gradually reduced over iterations. This allows the algorithm to 166

initially explore more freely and then gradually focus on exploitation as it approaches 167

convergence. 168

Termination Criteria: The algorithm runs until one or more termination criteria are met. These 169

criteria can include reaching a maximum number of iterations, exceeding a predefined number of 170

iterations without improvement, or achieving a target fitness value. The termination criteria ensure 171

that the algorithm does not run indefinitely and provides a solution within a reasonable time frame. 172

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

6

 173

Fig. 1 Flowchart of FFO 174

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

7

2.2 Detailed description 175

A more detailed description of FFO’s functions is provided herein. 176

Initialization (__init__) 177

The initialization function (__init__) of the FirefighterOptimization class sets up the algorithm's 178

parameters, agents, and initial conditions for optimization. These parameters include the objective 179

function, dimensions of the problem, number of agents, maximum iterations, no-improvement 180

limit, and bounds for the search space. Additional parameters stemming from existing algorithms 181

for crossover, mutation, simulated annealing, and perturbation control are also set up. The agents 182

(i.e., solutions) are initialized randomly within the specified bounds, and the best global agent and 183

fitness are identified at the start. 184

Initialization Process: 185

The process can be broken down into the following steps: 186

Parameter Setup 187

Agents Initialization: Agents are randomly distributed within the bounds: 188

Best Agent Identification: The initial best global agent and its fitness are determined: 189

Other Parameters: Additional parameters like step size, mutation rates, and counters are initialized: 190

Agent Evaluation (evaluate_agents) 191

The evaluate_agents function assesses the fitness of each agent within the initiated population. 192

This function updates the best global fitness and agent if/when a better solution is found. This 193

function calculates the fitness of each agent based on the objective function and updates the global 194

best agent if an improved solution is identified. This evaluation process also guides the algorithm's 195

search process toward better solutions. Mathematically, the evaluation involves computing the 196

objective function for each agent and identifying the agent with the minimum fitness value. 197

Objective Function, f(x): The function to be minimized and is evaluated for each agent xi. 198

Fitness Calculation: For each agent 𝑥𝑖, the fitness is 𝑓(𝑥𝑖). 199

Best Fitness Update: The global best fitness and agent are updated if a new minimum is found. 200

Evaluation Process 201

The evaluation process can be broken down into the following steps: 202

Fitness Calculation 203

Best Agent Identification 204

Return Fitness Values 205

Agent Update (update_agents) 206

The update_agents function is responsible for evolving the population of firefighters (i.e., agents) 207

to maintain diversity through crossover, mutation, and perturbation operations. This function 208

involves modifying agent positions in the solution space to explore new regions. As inspired by 209

genetic algorithms, this function applies crossover to combine traits from different agents, 210

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

8

mutation1 to introduce random changes, and perturbations to escape local optima. Mathematically, 211

the update process includes the following key components: 212

Crossover Operation 213

Mutation Operation 214

Perturbation Operation 215

Update Process: The update process involves the following steps: 216

Evaluate Agents: The fitness of agents is then evaluated to update the global best fitness achieved: 217

Crossover and Mutation: Each agent undergoes crossover and mutation based on set probabilities: 218

Perturbation: If no improvement is observed for an extended period, this function applies 219

perturbations: 220

Boundary Check: Agents are clipped within the bounds: 221

Trajectory and Perturbation History: Updates to agents are recorded for trajectory analysis 222

 223

Local Search (local_search) 224

The local_search function refines an agent's position by exploring its neighborhood. This function 225

helps agents escape local optima and find better solutions. This function involves making small 226

adjustments to an agent's position to find a better solution in its vicinity. The process is guided by 227

a temperature parameter, allowing the acceptance of worse solutions early on to escape local 228

optima. As the temperature decreases, the search becomes more focused on local refinement – in 229

a similar process to controlling fires. Mathematically, local search applies perturbations to an 230

agent's position and evaluates the new positions. The acceptance of new positions is probabilistic, 231

influenced by a temperature parameter. 232

Perturbation 233

Temperature 234

Acceptance Probability 235

Local Search Process: The process involves the following steps: 236

Temperature Calculation: The temperature is calculated based on the iteration: 237

Local Best Initialization: The current agent is considered the local best: 238

Perturbation and Evaluation: Small adjustments are made to the agent's position, and new positions 239

are evaluated: 240

Acceptance Check: New positions are accepted based on fitness improvement or probabilistically: 241

Return Local Best: The refined local best position is then returned: 242

Perturbation Application (apply_perturbation) 243

Perturbation application is a strategy to escape local optima by making larger adjustments to 244

agents' positions, which can be particularly useful when the algorithm stagnates. The 245

apply_perturbation function introduces significant changes to agents' positions based on the global 246

best agent when no improvement is observed. In mathematical notation, perturbation involves 247

adjusting an agent's position towards the global best agent, scaled by an intensity factor, such that: 248

Direction Vector: 249

Perturbation: 250

1 Further information on these operations will be provided in a subsequent section.

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

9

Perturbation Process 251

The process involves the following steps: 252

Direction Calculation: The direction vector from the agent to the global best is calculated: 253

Perturbation Calculation: A perturbation is applied based on the direction vector and intensity: 254

New Position Calculation: The agent's new position is calculated: 255

Crossover (crossover) 256

The crossover function combines parts of two agents to create new agents as a means of 257

introducing diversity into the initialized population. This genetic algorithm-inspired method helps 258

explore new solutions by recombining existing ones. Key components in this function include: 259

Crossover Point 260

New Agents 261

Crossover Process: The process involves the following steps: 262

Crossover Point Selection: A random crossover point is selected: 263

Agent Combination: New agents are created by combining segments of the parent agents: 264
Return New Agents: The new agents are returned: 265

Cooling Schedule (cooling_schedule) 266

The cooling_schedule function adjusts the step size based on the algorithm's progress, similar to 267

the cooling option in simulated annealing. The cooling schedule involves gradually reducing the 268

step size as the algorithm progresses (in a similar manner to controlling the fire toward the later 269

stages of firefighting). This process allows for a finer search of the solution space over time, 270

balancing exploration and exploitation. Mathematically, the cooling schedule involves updating 271

the step size based on the number of iterations and the no-improvement counter such that: 272

Step Size Update: 273

The step size is reduced based on a cooling factor. 274

Cooling Process: 275

The process involves the following steps: 276

Step Size Adjustment: The step size is adjusted based on the no-improvement counter: 277

 278

Execution Loop (run) 279

The run function controls the main execution loop of the algorithm, where agents are updated, 280

evaluated, and the cooling schedule is applied until a termination condition is met. It also tracks 281

the best solution and its fitness across iterations. The execution loop is the core of the optimization 282

process. It iteratively updates agents, evaluates their fitness, applies the cooling schedule, and 283

checks termination conditions. This loop continues until the optimization criteria are met, ensuring 284

that the algorithm converges to an optimal solution. Mathematically, the execution loop involves 285

iterating over the update and evaluation processes while tracking the best solution. Key 286

components include: 287

Execution Process 288

The process involves the following steps: 289

Initialization: The fitness history and trajectory are initialized 290

Main Loop: The main loop iterates until the termination condition is met 291

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

10

Return Best Solution: The best global agent and fitness are returned 292

Termination Check (should_terminate) 293

The should_terminate function determines whether the algorithm should stop based on several 294

conditions: maximum iterations reached, no improvement for a set number of iterations, or 295

achieving a target fitness level. Thus, this function ensures that the algorithm terminates when 296

further exploration is unlikely to yield better results. 297

Iteration Check: The algorithm stops if the maximum number of iterations is reached (i.e., 𝑘 ≥ max_iter). 298

No Improvement Check: The algorithm stops if no improvement is observed for a set number of iterations. 299

Target Fitness Check: The algorithm stops if the target fitness level is achieved. 300

Termination Process 301

The process involves the following steps: 302

Condition Check: The termination condition is evaluated based on the iteration, no-improvement 303

counter, and best global fitness 304

Return Condition: The termination condition is returned 305

Execution Time (get_execution_time) 306

The get_execution_time function calculates the total runtime of the algorithm as a means to 307

present a measure for evaluating the time efficiency of the algorithm. This execution time is 308

calculated as the difference between the end time and the start time. 309

Trajectory Tracking (get_trajectory) 310

The get_trajectory function records the sequence of solutions explored by the algorithm, which 311

can be further analyzed to examine the search behavior and pathway through the solution space. 312

The trajectory involves recording the positions of agents over time. 313

Total Distance Traveled (get_total_distance) 314

The get_total_distance function computes the cumulative distance traveled by the algorithm in the 315

solution space. Such a distance can be an indicator of the algorithm’s exploratory behavior and 316

efficiency. The total distance traveled involves summing the Euclidean distances between 317

consecutive positions of agents. 318

class FirefighterOptimization: 319

 def __init__(self, objective_func, dimension, num_agents=100, max_iter=500, no_improve_limit=30, bounds=(-320

5.12, 5.12), step_size=1.0, crossover_probability=0.5, mutation_probability=0.1, initial_temp=100.0, 321

cooling_rate=0.95, verbose=False, use_additional_conditions=False, target_fitness=1e-5): 322

 self.objective_func = objective_func 323

 self.dimension = dimension 324

 self.num_agents = num_agents 325

 self.max_iter = max_iter 326

 self.no_improve_limit = no_improve_limit 327

 self.bounds = bounds 328

 self.agents = np.random.uniform(bounds[0], bounds[1], (num_agents, dimension)) 329

 self.best_global_agent = np.copy(self.agents[np.argmin([self.objective_func(agent) for agent in self.agents])]) 330

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

11

 self.best_global_fitness = self.objective_func(self.best_global_agent) 331

 self.step_size = step_size 332

 self.crossover_probability = crossover_probability 333

 self.mutation_probability = mutation_probability 334

 self.initial_temp = initial_temp 335

 self.cooling_rate = cooling_rate 336

 self.mutation_rates = np.full(self.num_agents, 0.1) 337

 self.no_improve_counter = 0 338

 self.iteration = 1 339

 self.fitness_history = [] 340

 self.perturbation_history = [] 341

 self.verbose = verbose 342

 self.use_additional_conditions = use_additional_conditions 343

 self.target_fitness = target_fitness 344

 self.trajectory = [] 345

 self.start_time = None 346

 self.end_time = None 347

 348

 def evaluate_agents(self): 349

 fitness = np.array([self.objective_func(agent) for agent in self.agents]) 350

 best_index = np.argmin(fitness) 351

 if fitness[best_index] < self.best_global_fitness: 352

 self.best_global_fitness = fitness[best_index] 353

 self.best_global_agent = np.copy(self.agents[best_index]) 354

 self.no_improve_counter = 0 355

 else: 356

 self.no_improve_counter += 1 357

 return fitness 358

 359

 def update_agents(self): 360

 self.evaluate_agents() 361

 for i in range(self.num_agents): 362

 if np.random.rand() < self.crossover_probability: 363

 partner_index = np.random.randint(self.num_agents) 364

 self.agents[i], self.agents[partner_index] = self.crossover(self.agents[i], self.agents[partner_index]) 365

 if np.random.rand() < self.mutation_probability: 366

 self.agents[i] = self.local_search(self.agents[i], i) 367

 if self.no_improve_counter > 50: 368

 self.agents[i] = self.apply_perturbation(self.agents[i], 0.1 + 0.02 * (self.no_improve_counter - 50)) 369

 self.agents[i] = np.clip(self.agents[i], self.bounds[0], self.bounds[1]) 370

 self.trajectory.append(np.copy(self.agents[i])) 371

 self.perturbation_history.append(self.agents[i]) 372

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

12

 373

 def local_search(self, agent, index): 374

 temp = self.initial_temp * (self.cooling_rate ** self.iteration) 375

 best_local = agent 376

 best_local_fitness = self.objective_func(agent) 377

 for _ in range(10 + 5 * (self.no_improve_counter // 100)): 378

 perturbation = np.random.normal(0, self.step_size * self.mutation_rates[index], self.dimension) 379

 candidate = best_local + perturbation 380

 candidate_fitness = self.objective_func(candidate) 381

 if candidate_fitness < best_local_fitness or np.random.rand() < np.exp((best_local_fitness - 382

candidate_fitness) / temp): 383

 best_local = candidate 384

 best_local_fitness = candidate_fitness 385

 return best_local 386

 387

 def apply_perturbation(self, agent, intensity): 388

 direction = self.best_global_agent - agent 389

 perturbation = np.random.normal(0, intensity, self.dimension) * direction 390

 return agent + perturbation 391

 392

 def crossover(self, agent1, agent2): 393

 crossover_point = np.random.randint(1, self.dimension) 394

 new_agent1 = np.concatenate((agent1[:crossover_point], agent2[crossover_point:])) 395

 new_agent2 = np.concatenate((agent2[:crossover_point], agent1[crossover_point:])) 396

 return new_agent1, new_agent2 397

 398

 def cooling_schedule(self): 399

 if self.no_improve_counter > 50: 400

 self.step_size *= 0.98 401

 else: 402

 self.step_size *= 0.99 403

 404

 def run(self): 405

 self.fitness_history = [] 406

 self.trajectory = [] 407

 self.iteration = 1 408

 self.start_time = time.time() 409

 while not self.should_terminate(): 410

 self.update_agents() 411

 self.cooling_schedule() 412

 self.fitness_history.append(self.best_global_fitness) 413

 if self.verbose: 414

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

13

 print(f"Iteration {self.iteration}, Best Fitness {self.best_global_fitness}, No Improve Counter 415

{self.no_improve_counter}") 416

 self.iteration += 1 417

 self.end_time = time.time() 418

 return self.best_global_agent, self.best_global_fitness, self.fitness_history 419

 420

 def should_terminate(self): 421

 if self.use_additional_conditions: 422

 termination_condition = (423

 self.iteration >= self.max_iter or 424

 self.no_improve_counter > self.no_improve_limit or 425

 self.best_global_fitness < self.target_fitness 426

) 427

 else: 428

 termination_condition = self.iteration >= self.max_iter 429

 if termination_condition and self.verbose: 430

 print(f"Terminating: Iteration={self.iteration}, No Improve Counter={self.no_improve_counter}, Best 431

Fitness={self.best_global_fitness}") 432

 return termination_condition 433

 434

 def get_execution_time(self): 435

 return self.end_time - self.start_time 436

 437

 def get_trajectory(self): 438

 return self.trajectory 439

 440

 def get_total_distance(self): 441

 distance = 0 442

 for i in range(1, len(self.trajectory)): 443

 distance += np.linalg.norm(self.trajectory[i] - self.trajectory[i - 1]) 444

 return distance 445

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and Applications. https://doi.org/10.1007/s00521-025-11074-z.

14

Table 1 Qualitative comparison between FFO and commonly used optimization algorithms 446

Feature/Aspect FFO ACO BA BBO FPA GA GWO HS PSO SA TS WOA

Inspiration Firefighting
strategies

Ant foraging
behavior

Echolocation of
bats

Biogeography
concepts

Flower
pollination

Natural
evolution

Grey wolves'
hunting

Musical harmony Swarming
behavior of
birds/fish

Annealing
process in
metallurgy

Memory-based
search

Whale bubble-
net hunting

Exploration vs.
Exploitation

Balanced through
adaptive
mechanisms

Strong
exploration
initially, then
exploitation

Balanced Balanced Balanced Exploration
initially, then
exploitation

Balanced Balanced Balanced Exploration
initially, then
exploitation

Exploitation-
focused

Balanced

Memory Usage Utilizes historical
data for
perturbation

Pheromone trails
as indirect
memory

Historical positions
of bats

Habitat
suitability index

Best solutions
pollinate

Population-
based, uses
historical data

Pack leader
memory

Harmony memory Historical best
positions

Simulated states Tabu list Whale
positions
memory

Main Operators Local search,
crossover,
mutation,
perturbation

Pheromone
update, path
selection

Echolocation,
frequency tuning

Migration,
mutation

Global and
local
pollination

Selection,
crossover,
mutation

Encircling prey,
attacking,
searching

Pitch adjustment,
random selection

Velocity and
position update

Temperature-
based state
changes

Tabu list and
neighborhood
search

Encircling prey,
bubble-net
hunting

Adaptivity Adaptive step size
and perturbation
intensity

Pheromone
evaporation rate

Frequency
adjustment,
loudness and pulse
rate

Migration rates,
mutation rates

Switching
probability

Mutation and
crossover
probabilities

Adaptation in
search phases

Adjustments in
harmony memory
consideration rate

Inertia weight,
cognitive and
social
coefficients

Temperature and
cooling schedule

Adaptive tabu list
size

Adaptive
hunting
mechanism

Convergence
Speed

Generally fast due
to adaptive
mechanisms

Moderate Fast Moderate Fast Fast Fast Moderate Fast Moderate Slow to moderate Fast

Computational
Complexity

Moderate to high,
depends on
parameter settings

Moderate Moderate Moderate Moderate Moderate Moderate Moderate Low to moderate Low Moderate to high Moderate

Parameter
Sensitivity

Moderately
sensitive; requires
tuning

Highly sensitive
to pheromone
parameters

Moderately
sensitive

Moderately
sensitive

Moderately
sensitive

Highly sensitive Moderately
sensitive

Moderately
sensitive

Moderately
sensitive

Highly sensitive Moderately
sensitive

Moderately
sensitive

Scalability Good for high-
dimensional
problems

Moderate Good Good Good Good Good Good Good Moderate Good Good

Flexibility High, can
incorporate
various strategies

Moderate Moderate Moderate Moderate High Moderate Moderate High High Moderate Moderate

 447

▪ Inspiration: The natural or artificial process that inspired the algorithm's development. 448

▪ Exploration vs. Exploitation: The algorithm's balance between searching new areas (exploration) and refining known good 449

areas (exploitation). 450

▪ Memory Usage: How the algorithm uses past information to guide future searches. 451

▪ Main Operators: The primary mechanisms or processes the algorithm uses to find solutions. 452

▪ Adaptivity: The algorithm's ability to adjust its parameters dynamically during the optimization process. 453

▪ Convergence Speed: How quickly the algorithm typically finds a solution. 454

▪ Solution Quality: The effectiveness of the algorithm in finding high-quality solutions. 455

▪ Computational Complexity: The computational resources required by the algorithm, often related to time and memory usage. 456

▪ Parameter Sensitivity: The degree to which the algorithm's performance is affected by its parameter settings. 457

▪ Scalability: The algorithm's capability to handle problems of increasing size or complexity. 458

▪ Flexibility: The algorithm's adaptability to different types of optimization problems. 459

▪ Diversity Maintenance: How the algorithm ensures a diverse set of solutions to avoid premature convergence. 460

▪ Typical Applications: Common fields or problems where the algorithm is frequently applied. 461

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

15

3.0 Description of benchmarking algorithms, experiments, and functions 462

This section describes the experimental examination used to benchmark FFO. For a start, FFO was 463

examined against 13 other commonly used optimization algorithms, namely, the Ant Colony 464

Optimization (ACO), Bat Algorithm (BA), Biogeography-Based Optimization (BBO), Cuckoo 465

Search (CS), Firefly Algorithm (FA), Flower Pollination Algorithm (FPA), Genetic Algorithm 466

(GA), Grey Wolf Optimizer (GWO), Harmony Search (HS), Particle Swarm Optimization (PSO), 467

Simulated Annealing (SA), Tabu Search (TS), and Whale Optimization Algorithm (WOA). All of 468

these algorithms were used in their default settings2 , and a brief description of each is presented 469

herein for completion. We invite interested readers to review the original publications for these 470

algorithms to learn more about their settings and applications. 471

3.1 Ant Colony Optimization (ACO) 472

The Ant Colony Optimization (ACO) was formulated by Dorigo and colleagues [21] based on the 473

pheromone-laying behavior observed in certain ant species. This method uses ants as artificial 474

agents to simulate the decision-making process of real ants in selecting paths. As ants traverse 475

paths, they deposit pheromones that guide subsequent ants toward promising solutions. The ACO 476

algorithm is a probabilistic approach to problem-solving where the search space is represented as 477

a graph, and paths through this graph are evaluated based on the intensity of pheromone deposits. 478

The algorithm's efficiency hinges on several parameters: alpha (influence of pheromone on path 479

selection, set at 1.0), beta (influence of heuristic information on path choice, set at 2.0), and rho 480

(rate of pheromone evaporation, set at 0.5). This algorithms has been successfully applied to 481

network routing, scheduling, and other optimization problems that involve finding optimal paths 482

through graphs [22]. 483

3.2 Bat Algorithm (BA) 484

Developed by Yang et al. in 2012 [23], the Bat Algorithm (BA) was designed to mimic the 485

echolocation behavior of bats. This algorithm models bats that emit sound waves to navigate and 486

locate prey, translating this biological mechanism into a search and optimization strategy. In BA, 487

each simulated bat adjusts its flight based on velocity, loudness, and echolocation frequency, 488

which dynamically changes from exploration to exploitation phases depending on the proximity 489

to optimal solutions. Key parameters of BA include alpha (initial loudness, set at 0.5), gamma (rate 490

of loudness decrease and emission rate increase, set at 0.5), and frequency range (fmin at 0, fmax at 491

2.0). BA is adept at tackling complex problems characterized by continuous and multimodal search 492

spaces and has shown effectiveness in engineering design and dynamic optimization tasks [24]. 493

2 The default setting for FFO include:

FirefighterOptimization:
def __init__(self, objective_func, dimension, num_agents=100, max_iter=500, no_improve_limit=30, bounds=(-5.12,
5.12), step_size=1.0, crossover_probability=0.5, mutation_probability=0.1, initial_temp=100.0, cooling_rate=0.95,
verbose=False, use_additional_conditions=False, target_fitness=1e-5):)

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

16

3.3 Biogeography-Based Optimization (BBO) 494

Introduced by Simon in 2008 [25], Biogeography-Based Optimization (BBO) leverages migration 495

concepts from biogeography to solve optimization problems. BBO operates on the premise that 496

species migrate between habitats, affecting their survival and reproduction rates. The algorithm 497

features migration operators that simulate gene flow by exchanging solution features, akin to 498

species migration in nature. Key components include the habitat suitability index, which evaluates 499

the desirability of solutions, and migration rates that determine the exchange intensity between 500

solutions. BBO also uses mutation to enhance genetic diversity and avoid premature convergence 501

on suboptimal solutions. The BBO algorithm has proven effective in network design, power 502

systems optimization, and other applications where geographic considerations are crucial [26]. 503

3.4 Cuckoo Search (CS) 504

Cuckoo Search (CS) was developed by Yang and Deb [27]. This algorithm is inspired by the 505

obligate brood parasitism of some cuckoo species by laying their eggs in the nests of other host 506

birds. If a host bird discovers the eggs are not its own, it will either throw them away or abandon 507

its nest. The algorithm uses this idea to lay a new solution (egg) into a randomly chosen nest, and 508

the best nests with high-quality eggs will be carried over to the next generations. CS is known for 509

its simplicity and flexibility. It has been effectively applied in solving problems like structural 510

design, scheduling, and routing problems where the search space is discrete, and the global 511

optimum is hidden among many local optima [28]. 512

3.5 Firefly Algorithm (FA) 513

The flashing behavior of fireflies inspires the Firefly Algorithm (FA). Such a flashing behavior 514

acts as a signal system to attract other fireflies. FA, developed by Yang in 2008 [29], uses these 515

biologically inspired techniques to handle optimization problems and functions. Fireflies in the 516

algorithm search the space by moving towards brighter and more attractive fireflies. The 517

attractiveness is proportional to the brightness, and both decrease as their distance increases. The 518

landscape of the objective function determines the brightness of a firefly. A key advantage of FA 519

is its ability to deal with multimodal optimization problems, as it naturally divides the population 520

into subgroups that converge to different optima. Some of the key settings in the FA algorithm 521

include alpha (a randomness factor that affects the movement of a firefly and helps fireflies explore 522

the search space beyond the immediate neighboring fireflies, selected at 0.5), beta (controls how 523

strongly other fireflies are drawn towards it, selected at 1.0), and gamma (influences how the 524

attractiveness of a firefly decreases with distance, selected at 1.0). This feature makes it 525

particularly useful for complex functions with multiple local optima. FA has been applied to 526

problems like economic dispatch, clustering, and image processing [30]. 527

3.6 Flower Pollination Algorithm (FPA) 528

Devised by Yang et al. in 2012 [31], the Flower Pollination Algorithm (FPA) algorithm emulates 529

the natural pollination processes of flowers. It aims to optimize solutions by alternating between 530

self-pollination and cross-pollination mechanisms that are naturally facilitated by natural vectors 531

like insects, wind, or water. This approach maintains solution diversity and promotes effective 532

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

17

convergence. In FPA, solutions are represented as flowers whose attractiveness—determined by 533

fitness—guides the pollination process. The algorithm uses local pollination for minor adjustments 534

within the immediate search area and global pollination, employing Levy flights for broader 535

searches to escape local optima. FPA's dual strategy has been effectively applied to engineering 536

design and economic load dispatch challenges [32]. 537

 538

3.7 Genetic Algorithm (GA) 539

Holland [33] formulated the Genetic Algorithm (GA) as a computational analog to natural 540

selection, embodying the principle of survival of the fittest. GA begins with a population of 541

randomly generated individuals, evolving over generations to optimize solutions. Selection is 542

fitness-based, favoring solutions that perform better under a defined fitness function. GA 543

incorporates mutation and crossover as genetic operators to introduce variability and new traits 544

into offspring. Typical parameters include a population size of 100, a mutation rate of 0.1, and a 545

crossover rate of 0.1. This algorithm is widely utilized across fields such as optimization, automatic 546

programming, and machine learning, where it helps solve complex problems efficiently [34]. 547

3.8 Grey Wolf Optimizer (GWO) 548

The Grey Wolf Optimizer (GWO), introduced by Mirjalili et al. in 2014 [35], is a nature-inspired 549

metaheuristic algorithm inspired by grey wolves' social structure and hunting behavior. Grey 550

wolves exhibit a distinct hierarchical system consisting of alpha, beta, delta, and omega wolves, 551

with each tier playing a specific role within the pack. In GWO, this hierarchy is mirrored in the 552

solution process: the alpha wolf represents the optimal solution, followed by beta and delta as the 553

second and third best solutions, respectively, while omega wolves embody the remaining candidate 554

solutions. The algorithm leverages this structure to simulate the wolves' hunting strategy, which is 555

segmented into three phases: tracking, encircling, and attacking prey, each reflecting a critical 556

phase of the optimization process. GWO is adept at navigating complex, multidimensional 557

landscapes, making it valuable in fields such as mechanical engineering design and renewable 558

energy optimization, where the search spaces often exhibit high nonlinearity and multimodality. 559

3.9 Harmony Search (HS) 560

Developed by Geem et al. in 2001 [36], Harmony Search (HS) is an optimization algorithm 561

inspired by the improvisational process of musicians tuning their instruments to achieve aesthetic 562

harmony. This algorithm iteratively adjusts solution vectors in a similar fashion to musicians' 563

adjust pitches to optimize a given function. HS employs a stochastic approach rather than a 564

gradient-based method, enhancing its efficacy in addressing non-differential and discrete 565

problems. The algorithm’s performance is governed by two primary parameters: the harmony 566

memory consideration rate (set at 0.9), which dictates the likelihood of selecting existing memory 567

solutions for new harmonies, and the pitch adjustment rate (set at 0.3), which determines how 568

much the chosen solutions are modified. HS has shown significant utility in solving complex 569

engineering problems such as structural and water network design, where traditional methods may 570

struggle due to the extensive search spaces involved. 571

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

18

3.10 Particle Swarm Optimization (PSO) 572

Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart in 1995 [37]. This 573

algorithm simulates the social behaviors observed in flocks of birds or schools of fish. This 574

metaheuristic optimizes problem solutions by iteratively enhancing a population of candidate 575

solutions based on the personal and collective experiences of the particles. For example, the PSO 576

starts with randomly initialized particles (solutions) and updates their positions within the search 577

space by balancing personal best achievements and global knowledge shared across the swarm. 578

The algorithm is known for its simplicity and adaptability, often requiring few parameter 579

adjustments. It utilizes three key parameters: swarm size (typically 100 particles), cognitive 580

coefficient (influence of the particle’s own memory, set at 1.0), and social coefficient (influence 581

of neighboring particles, also set at 1.0). These factors influence the dynamics of particle 582

movements towards optimal solutions. PSO is particularly effective in continuous, high-583

dimensional environments and has been applied successfully across various domains, including 584

electrical power systems, robotics, and bioinformatics [38]. 585

3.11 Simulated Annealing (SA) 586

Simulated Annealing (SA) was developed by Kirkpatrick et al. in 1983 and Cerny in 1985 [39]. 587

This is a probabilistic method designed to approximate the global optimum of a function. SA is 588

inspired by the metallurgical process of annealing, where materials are heated and then gradually 589

cooled to improve their structural properties. This process is mimicked by allowing a system to 590

explore higher energy states (solutions) by heating, thereby overcoming local optima, followed by 591

slow cooling to stabilize at a lower energy state (optimal solution). The algorithm makes random 592

transitions to neighboring solutions, accepting improvements outright and worse solutions based 593

on a decreasing probability over time. Key parameters include the initial temperature (set at 100) 594

and cooling rate (set at 0.95). SA has been successfully applied across various domains, from 595

economics to computational science [40]. 596

3.12 Tabu Search (TS) 597

Tabu Search (TS) was introduced by Glover in the late 1980s [41] as a metaheuristic that extends 598

beyond local search methods. TS extends such methods by adopting a memory structure, the tabu 599

list, to avoid cycling back to previously encountered suboptimal solutions. This list temporarily 600

bans certain moves, helping the algorithm to escape local optima and explore less favorable 601

solutions that might lead to a globally optimal solution. TS is adaptable, allowing periodic resetting 602

of the tabu status to balance exploration and exploitation. It is particularly effective in complex 603

scheduling, logistical planning, and assignment problems, where its ability to navigate challenging 604

solution spaces is applications [42]. 605

3.13 Whale Optimization Algorithm (WOA) 606

The Whale Optimization Algorithm (WOA) was developed by Mirjalili and Lewis in 2016 [43]. 607

The WOA draws inspiration from the bubble-net feeding behavior of humpback whales. This 608

algorithm simulates the whales' strategies of encircling prey and using a spiral path to close in, 609

which are mirrored in the shrinking encircling mechanism and spiral updating position phases of 610

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

19

the algorithm. These methods allow the WOA to balance exploration and exploitation 611

dynamically, making it adept at handling complex, non-separable, and nonlinear optimization 612

problems. WOA's effectiveness is demonstrated in its applications across mechanical design and 613

industrial engineering, where it optimizes a variety of challenging problem landscapes [44]. 614

4.0 Description of utilized benchmarking functions 615

This section describes 24 benchmark functions commonly used in benchmarking analysis. 616

4.1 Ackley Function 617

The Ackley function has a two-dimensional form with a relatively uniform plane [45]. This 618

function also has several dozen local minimums and one global extreme of significantly smaller 619

value than most of the local minimums. This function allows very efficient testing of optimization 620

algorithms as regards stopping at local extremes. The Ackley function is designed to test the ability 621

of optimization algorithms to escape local minima and converge towards a global minimum in a 622

complex landscape. The global minimum is at 𝑥=0 where 𝑓(𝑥)=0. This function has the following 623

form: 624

𝑓(𝑥) = −20 exp (−0.2√
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1) − exp (

1

𝑛
∑ cos(2𝜋𝑥𝑖)𝑛

𝑖=1) + 20 + 𝑒 Eq. 1 625

4.2 Alpine Function 626

The Alpine function is a multimodal and non-smooth function and hence can provide significant 627

challenges in terms of local minima and ruggedness tests [46]. This function examines the ability 628

of optimization algorithms to handle non-differentiable points with abrupt changes. The global 629

minimum for this function occurs at 𝑥=0 where 𝑓(𝑥)=0. This function can be useful for testing 630

optimization algorithms in real-world problems involving non-smooth dynamics, such as 631

mechanical systems with friction or other resistive forces. This function has the following form: 632

𝑓(𝑥) = ∑ |𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|
𝑛
𝑖=1 Eq. 2 633

4.3 Booth's Function 634

This function presents a simple test case for algorithm testing with a convex with a single global 635

minimum at (𝑥,𝑦) = (1,3) where 𝑓(𝑥,𝑦) = 0. This function has the following form: 636

𝑓(𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2 + (2𝑥 + 𝑦 − 5)2 Eq. 3 637

4.4 Cross-in-Tray Function 638

This function is known for its challenging landscape, characterized by a high degree of 639

multimodality [47]. The function contains several deep holes, indicative of global minima, which 640

are located symmetrically in the function’s domain, and may present a significant challenge in the 641

convergence process of algorithms to navigate complex landscapes and avoid local minima in 642

favor of locating and confirming global minima. The global minima occur at approximately 643

(𝑥,𝑦)=(1.34941,−1.34941),(−1.34941,1.34941),(1.34941,1.34941),(−1.34941,−1.34941) with 644

𝑓(𝑥,𝑦)≈−2.06261. This function has the following form: 645

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

20

𝑓(𝑥, 𝑦) = −0.0001 (|sin(𝑥) sin(𝑦) exp (|100 −
√𝑥2+𝑦2

𝜋
|)| + 1)

0.1

 Eq. 4 646

4.5 Drop-Wave Function 647

This function features a rippled wave surface that turn challenging to optimize due to its frequent 648

local minima and a pronounced global minimum [48]. This is a multimodal function with a global 649

minimum at (𝑥,𝑦)=(0,0) where f(x,y)=−1. It tests an algorithm's capability to navigate through 650

frequent oscillations to find the lowest point and is particularly relevant for simulations and 651

optimizations in fields involving vibrational analysis and wave propagation (i.e., acoustics and 652

materials science, etc.). This function has the following form: 653

𝑓(𝑥, 𝑦) = −
1+cos (12√𝑥2+𝑦2)

0.5(𝑥2+𝑦2)+2
 Eq. 5 654

4.6 Easom Function 655

The Easom function is a highly unimodal benchmark function stemming from its narrow global 656

peak that is surrounded by a flat landscape [49]. This function has a constant plane over the vast 657

majority of the domain with one global minimum, at (𝑥,𝑦)=(𝜋,𝜋) where 𝑓(𝑥,𝑦)=−1, that is difficult 658

to locate due to the flatness of the surrounding area. Oftentimes, this function is used in testing the 659

precision and convergence characteristics of optimization algorithms, and their ability to hone in 660

on and precisely converge to a sharply defined minima. This function has the following form: 661

𝑓(𝑥, 𝑦) = − cos(𝑥) cos(𝑦) exp (−((𝑥 − 𝜋)2 + (𝑦 − 𝜋)2)) Eq. 6 662

4.7 Eggholder Function 663

The Eggholder function has a highly irregular and complex surface characterized by an uneven 664

plane with several local minimums (of values like its only global minimum) [50,51]. The global 665

minimum is found at (𝑥,𝑦)=(512,404.2319) where 𝑓(𝑥,𝑦)≈−959.6407. This function is frequently 666

used in benchmarking sophisticated global optimization algorithms, especially those intended to 667

solve rugged and unpredictable landscape-based problems. This function has the following form: 668

𝑓(𝑥, 𝑦) = −(𝑦 + 47) sin (√|(
𝑦+𝑥

2+47
)|) − 𝑥𝑠𝑖𝑛(√|𝑥 − (𝑦 + 47)|) Eq.7 669

4.8 Expanded Schaffer's F6 Function 670

This is an expansion of the original Schaffer's function that hopes to test for algorithm effectiveness 671

over a broader area with a more complex landscape. More specifically, the function is highly 672

multimodal and oscillatory and hence presents a significant challenge in identifying the global 673

minimum amidst numerous local minima. The function has a global minimum at (𝑥,𝑦)=(0,0) where 674

𝑓(𝑥,𝑦)=0. This function can be used in testing spatial algorithms that may be applied in fields like 675

geographic information systems and molecular dynamics where spatial relationships and dynamics 676

are crucial. 677

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

21

𝑓(𝑥) = 0.5 +
sin2(√𝑥2+𝑦2)−0.5

[1+0.001(𝑥2+𝑦2)]2 Eq. 8 678

4.9 Expanded Zakharov Function 679

This is an extension of the Zakharov function [46] and provides a more challenging scenario for 680

testing optimization algorithms by combining linear, quadratic, and quartic terms. This function 681

has a single global minimum at 𝑥=0 where 𝑓(𝑥)=0. This function is used to evaluate the 682

performance of large-scale optimization algorithms in areas such as financial modeling and energy 683

systems, where complex interactions between variables are common. 684

𝑓(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 + (∑ 50𝑖𝑥𝑖
𝑛
𝑖=1)2 + (∑ 50𝑖𝑥𝑖

𝑛
𝑖=1)4 Eq. 9 685

4.10 Goldstein-Price Function 686

This function was created by Goldstein and Price [52] to provide a multimodal complex landscape 687

with sharp peaks and valleys. The same function has several local minima and a global minimum 688

found at (𝑥,𝑦) = (0,−1) with 𝑓(𝑥,𝑦) = 3. This function has the following form: 689

𝑓(𝑥, 𝑦) = [1 + (𝑥 + 𝑦 + 1)2(19 − 14𝑥 + 3𝑥2 − 14𝑦 + 6𝑥𝑦 + 3𝑦2)] × [30 + 2(𝑠𝑥 −690

3𝑦)2(18 − 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦 + 27𝑦2)] Eq. 10 691

4.11 Griewank Function 692

The Griewank function has large, flat areas interrupted by periodic narrow, deep valleys [53]. This 693

function is highly multimodal and oscillatory and can challenge the algorithm's ability to find the 694

global minimum (at 𝑥=0) amidst frequent changes in gradient. It is particularly used to test the 695

efficiency of algorithms in handling complex oscillations and multimodal functions with 696

application within acoustic waveguides design and structural engineering with regard to vibrations. 697

This function has the following form: 698

𝑓(𝑥) = 1 + ∑
𝑥𝑖

2

4000
−𝑛

𝑖=1 ∏ cos (𝑛
𝑖=1 𝑥𝑖/√𝑖) Eq. 11 699

4.12 Himmelblau's Function 700

Developed by Himmelblau [54], this function is characterized by multiple global minima, which 701

makes it interesting for testing the robustness of optimization algorithms to locate and distinguish 702

between multiple optima within a complex landscape. This function has four identical global 703

minima located at 704

(𝑥,𝑦)=(3,2),(−2.805118,3.131312),(−3.779310,−3.283186),(3.584428,−1.848126) where 705

𝑓(𝑥,𝑦)=0. This function has the following form: 706

𝑓(𝑥, 𝑦) = (𝑥2 + 𝑦 − 11)2 + (𝑥 + 𝑦2 − 7)2 Eq. 12 707

4.13 Holder Table Function 708

The Holder Table function features several deep and narrow global minima and is designed to 709

challenge optimization algorithms in finding and recognizing global solutions in a multimodal 710

space [55]. The function’s global minima are symmetrically located around the origin, with four 711

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

22

known global minima where 𝑓(𝑥,𝑦)=−19.2085. This function can serve as a good evaluation metric 712

for multimodal optimization capabilities in logistics and routing problems where multiple 713

equivalent optimal routes need to be evaluated. This function has the following form: 714

𝑓(𝑥, 𝑦) = − |sin(𝑥) cos(𝑦) exp (|1 −
√𝑥2+𝑦2

𝜋
|)| Eq. 13 715

4.14 Levy Function N.13 716

This is a variant to the Levi function. This variant is designed to test algorithms against steep 717

gradients and local optima. More specifically, this function has steep ridges and a complex global 718

structure with a global minimum at (𝑥,𝑦)=(1,1) where 𝑓(𝑥,𝑦)=0. The Levi can be useful in 719

examining algorithms that need to handle sudden changes in gradient effectively. This function 720

has the following form: 721

𝑓(𝑥, 𝑦) = sin2(3𝜋𝑥) + (𝑥 − 1)2(1 + sin2(3𝜋𝑦)) + (𝑦 − 1)2 (1 + sin2(2𝜋𝑦) Eq. 14 722

4.15 Matyas Function 723

This function was created by Matyas [56] as convex function that could serve as an elementary 724

test case for basic functionality and efficiency of optimization algorithms in a controlled setting. 725

The Matyas function has a global minimum at (𝑥,𝑦) = (0,0) where 𝑓(𝑥,𝑦)=0. This function has the 726

following form: 727

𝑓(𝑥, 𝑦) = 0.26(𝑥2 + 𝑦2) − 0.48𝑥𝑦 Eq. 15 728

4.16 Michalewicz Function 729

This function was created by Michalewicz [57] to be especially difficult for evolutionary 730

algorithms to solve. This function is highly multimodal, with sharp peaks and valleys that are 731

sensitive to the variable 𝑚, which controls the steepness of the valleys and ridges. The function's 732

global minimum becomes more difficult to locate as 𝑚 increases (with a typical value of 𝑚=10). 733

This function can be used in the testing and development of genetic and evolutionary algorithms, 734

particularly effective for applications requiring high precision in aerodynamics and biomechanical 735

engineering. This function has the following form: 736

𝑓(𝑥) = − ∑ sin(𝑥𝑖) sin2𝑚(𝑛
𝑖=1

𝑖𝑥𝑖
2

𝜋
) Eq. 16 737

4.17 Rastrigin Function 738

This function is named after Rastrigin [58] and presents an example of a highly non-linear 739

multimodal function with frequent local minima. The global minimum is at 𝑥=0 where 𝑓(𝑥)=0. 740

The function is particularly designed to test the algorithm's capability to escape local minima and 741

is widely used in the testing and development of algorithms in evolutionary computation and real-742

world scenarios where noise and local minima are prevalent, such as in electronic circuit design. 743

This function has the following form: 744

𝑓(𝑥) = 10𝑛 + ∑ [𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖)]𝑛

𝑖=1 Eq. 17 745

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

23

4.18 Rosenbrock Function 746

This function was designed by Rosenbrock in 1960 as a non-linear and non-convex function to 747

test the performance of optimization algorithms over rugged terrain with a narrow, curved valley 748

leading to a global minimum [59]. This function has a global minimum inside a long, narrow, 749

parabolic shaped flat valley. In general, finding the valley is straightforward but converging to the 750

global minimum is difficult. A common multidimensional generalization of this function has the 751

following form: 752

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (1 − 𝑥𝑖)

2]𝑛−1
𝑖=1 Eq. 18 753

4.19 Schaffer Function N. 2 754

This function is a variant belonging to the family of functions introduced by Schaffer, which are 755

used to evaluate the performance of optimization algorithms in handling oscillating landscapes 756

with narrow valleys [60]. The function is non-convex and multimodal, with a global minimum at 757

(𝑥,𝑦)=(0,0) where 𝑓(𝑥,𝑦)=0. This variant can be sensitive to initial conditions due to the presence 758

of sharp peaks and deep valleys. This function has the following form: 759

𝑓(𝑥, 𝑦) = 0.5 +
sin2(𝑥2−𝑦2)−0.5

[1+0.001(𝑥2+𝑦2)]2 Eq. 19 760

4.20 Schwefel Function 761

The Schwefel function is a classic optimization test problem introduced by Schwefel [61]. This 762

function is initially created for evolutionary algorithms and has complex and non-linear large 763

number of local minima (with a global minimum located near the bounds of the search space at 764

𝑥=(420.9687,…,420.9687) where 𝑓(𝑥)≈0). This function can be helpful in in fields such as 765

aerospace for optimizing the shapes and trajectories of dynamic flying bodies. This function has 766

the following form: 767

𝑓(𝑥) = 418.9829𝑛 − 𝑥𝑖sin (√|𝑥𝑖|) Eq. 20 768

4.21 Sphere Function 769

The Sphere function is one of the classical and simplest benchmark functions often used to test 770

preliminary optimization algorithms in terms of convergence and accuracy. The Sphere function 771

is continuous, convex, and unimodal with a global minimum at 𝑥∗ = 0 where 𝑓(𝑥∗) = 0. This 772

function has the following form: 773

𝑓(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 Eq. 21 774

4.22 Styblinski-Tang Function 775

The Styblinski-Tang function has steep valleys and multiple local minima and hence is recognized 776

for its utility in testing optimization algorithms [62]. This function is multimodal, with each 777

variable contributing quadratically and quartically to the output. This function can be suitable for 778

evaluating the efficiency of algorithms in high-dimensional spaces and their capability to scale 779

with increasing dimensionality (which makes it appropriate for practical engineering problems 780

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

24

involving material design and circuit optimization with multiple variables required to be 781

simultaneously optimized). The global minimum for this function is at 𝑥𝑖=−2.903534x (for all 𝑖) 782

where 𝑓(𝑥)=−39.16599𝑛 (where 𝑛 is the number of dimensions). This function has the following 783

form: 784

𝑓(𝑥) =
1

2
∑ (𝑥𝑖

4 − 16𝑥𝑖
2 + 𝑥𝑖5)𝑛

𝑖=1 Eq. 22 785

4.23 Three-hump Camel Function 786

This function is named for its shape, resembling three camel humps and is designed as a simple 787

and effective benchmark for testing optimization algorithms [63]. This function can be used to 788

evaluate an algorithm’s capability to escape local minima and find the global minimum. The 789

Three-hump Camel function has a global minimum at (𝑥,𝑦)=(0,0) where 𝑓(𝑥,𝑦)=0. This function 790

has the following form: 791

𝑓(𝑥, 𝑦) = 2𝑥2 − 1.05𝑥4 +
𝑥6

6
+ 𝑥𝑦 + 𝑦2 Eq. 23 792

4.24 Whitley's Function 793

Whitley's function is known for its complex landscape with a high number of local minima [51]. 794

This function is tests algorithms for their ability to distinguish subtle gradient changes and avoid 795

premature convergence. This function can be used for complex, real-world problems such as 796

landscape exploration and molecular configuration. This function has the following form: 797

𝑓(𝑥) = ∑ ∑ (
100(𝑥𝑖

2−𝑥𝑗)
2

+(1−𝑥𝑗)
2

4000
− cos (200(𝑥𝑖

2 − 𝑥𝑗)
2𝑛

𝑗=1
𝑛
𝑖=1 + (1 − 𝑥𝑗)^2) + 1) Eq. 24 798

Table 2 includes the name of each function, its typical domain range, primary characteristics, 799

known challenges, and the dimensionality for which the function is typically evaluated. Figure 1 800

compares these functions visually. 801

Table 2 Holistic comparison of the examined functions. 802

Function
Name

Domain
Range

Characteristics Challenges
Typical

Dimensionality
Minima/

Minimum

Ackley (-5, 5)
Nearly flat outer region,

large hole
Global minimum difficult

to find due to flatness
Multiple 0

Alpine (-10, 10)
Multimodal, peaks and

valleys

Peaks make locating
global minima

challenging
Multiple 0

Beale's (-4.5, 4.5) Multimodal Several local minima 2 0

Booth's (-10, 10)
Smooth, few local

minima
Simplicity, limited

challenge
2 0

Cross-in-Tray (-10, 10) Highly multimodal
Multiple global minima

spread out
2 −2.0626

Drop-Wave
(-5.12,
5.12)

Central peak
surrounded by ring of

minima

Central peak difficult to
stabilize on

Multiple -1

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

25

Easom (-100, 100) Narrow peak, unimodal
Extremely narrow
attraction region

2 -1

Eggholder (-512, 512)
Large search space,

numerous local minima
Complex landscape,

many minima
Multiple -959.640

Expanded
Schaffer's F6

(-10, 10)
Numerous local

minima, complex
landscape

Maintaining algorithm
stability

2 0

Expanded
Zakharov

(-10, 10)
Combines parabolic

and linear terms
Optimization of

combined effects
Multiple 0

Goldstein-
Price

(-2, 2)
Complex topology,

multimodal
Local minima near

boundaries
2 3

Griewank (-600, 600)
Many widespread

minima
Large search space,
many local minima

Multiple 0

Himmelblau's (-5, 5) Multiple global minima
Identifying correct global

minimum
2 0

Holder Table (-10, 10)
Symmetric, multiple

global minima
Symmetry can confuse

algorithms
Multiple -19.2085

Levy N.13 (-10, 10)
Steep valleys, complex

structure
Pronounced ridges and

steep drops
2 0

Matyas (-10, 10) Smooth, unimodal Limited complexity 2 0

Michalewicz (0, π)
Designed for

evolutionary algorithms
Sharp, narrow valleys Multiple Multiple

Rastrigin
(-5.12,
5.12)

Highly multimodal,
oscillating

Numerous local minima,
large search space

Multiple 0

Rosenbrock
(-2.048,
2.048)

Non-convex, narrow
curved valley

Finding the global
minimum in the narrow

valley
Multiple 0

Salomon's (-100, 100)
Strong global structure,

multimodal
Multiple deceptive local

minima
Multiple 0

Schaffer N. 2 (-100, 100) Sharp ridges, flat areas
Balancing exploration

and exploitation
Multiple 0

Schwefel (-500, 500)
Sinusoidal, maxima and

minima

Identifying global
minimum amid

deceptive maxima
Multiple 0

Sphere
(-5.12,
5.12)

Smooth, convex,
unimodal

Simplicity may not
challenge advanced

algorithms
Multiple 0

Styblinski-
Tang

(-5, 5)
Steep valleys,
multimodal

Harsh penalties for
incorrect solutions

Multiple -39.165n

Three-hump
Camel

(-5, 5) Three humps, unimodal Misleading local minima 2 0

Whitley's (-10, 10)
Highly complex and

multimodal
Complexity and size of

search space
Multiple 0

 803

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

26

 804

Fig. 1 Visual representation of the utilized test and benchmark functions 805

5.0 Discussion, experiments, results, and analysis 806

Two sets of experiments were conducted to evaluate the performance of the FFO algorithm. In the 807

first, we examine the performance of the FFO algorithm and the other listed algorithms against the 808

aforenoted benchmark functions in 2D settings. Then, we examine the algorithmic performance 809

against the scalable functions at higher dimensions (20D and 50D). In all cases, the experiments 810

entitled a comparison of algorithmic performance in terms of best fitness and fitness history 811

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

27

achieved, time taken to execute the analysis per algorithm, trajectory analysis, and a combined 812

combination of metrics. All of these items are discussed herein in detail. 813

The best fitness is defined as the most favorable value of the objective function obtained in an 814

analysis by an algorithm across all of its iterations or agents. This metric is traced progressively, 815

with the algorithm updating this metric whenever an improved solution is found. Then, the 816

exaction time is defined as the total time from the start of its execution until it terminates. 817

Trajectory refers to the sequence of points that document the position of agents (or the best agent) 818

in the search space. This distance is calculated by summing up the Euclidean distances between 819

consecutive points in the trajectory. Further, four additional categories were used to evaluate the 820

selected algorithms. These include documenting the performance of algorithms in terms of 821

identifying the functions that took the longest (and shortest) time to solve and those that achieved 822

the most (and least) accuracy. 823

To facilitate a leaner comparison, the execution time and distance explored metrics were combined 824

into a new metric named the Distance per Unit Time metric. This metric directly measures the 825

average distance covered per unit of time, which is directly interpretable as: 826

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑒𝑟 𝑈𝑛𝑖𝑡 𝑇𝑖𝑚𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 =
 𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝐸𝑥𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 827

This measures how much distance is covered on average per second. Therefore, higher values 828

indicate more efficient exploration of the search space. 829

The conducted analysis was ran and evaluated in a Python 3.10.5 environment using an Intel(R) 830

Core(TM) i7-9700F CPU @ 3.00GHz and an installed RAM of 32.0GB. To ensure fairness, the 831

control parameters of FFO and the 13 metaheuristics employed in the performance evaluation 832

simulation were presented earlier and are found in our simulation script. In all cases, all algorithms 833

ran for 100, 1000, and 3000 iterations and with 10, 50, and 100 agents. As mentioned above, the 834

first leg of the analysis focused on all benchmarking functions at 2D, and the second leg focused 835

on scalable functions (12 out of the original 24 functions) at higher dimensions (20D and 50D). 836

2D setting 837

Table 3 and Fig. 2 list the overall obtained results from the analysis carried out on all algorithms 838

and functions in 2D setting. This table presents a comparative performance analysis of various 839

optimization algorithms based on metrics such as best fitness, execution time, and distance 840

metrics. Ant Colony Optimization, for instance, shows a mean best fitness of 1.22E+05 with high 841

variability (standard deviation of 9.48E+05) and ranges from -563 to 7.35 in its best fitness 842

performance. In terms of spatial efficiency, it maintains a low average distance metric (mean of 843

0.092). On the other hand, the Firefly algorithm demonstrates a broader range in execution time, 844

peaking at 1803 seconds, and exhibits a significantly wider spread in the distance metric, reaching 845

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

28

up to 91,600. The FFO with additional conditions3 "OFF" significantly improves best fitness and 846

execution efficiency and large exploration capabilities to a maximum of 1.20E+08. It is quite clear 847

that the FFO ranked well in all metrics and achieved the top ranking in terms of the Distance per 848

Unit Time metric. 849

 850

Fig. 2 Ranking of algorithms in 2D settings 851

3 The FFO (with additional conditions OFF) runs the FFO in a similar fashion to the other algorithms (i.e., to the same

number of iterations without any additional stopping criteria). The counterpart version (with additional conditions

ON) runs the FFO with all stopping criteria as described above. A true comparison between all algorithms should rely

on the OFF version and hence is maintained herein.

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and Applications. https://doi.org/10.1007/s00521-025-

11074-z.

29

Table 3 Overall results for 2D setting 852

Algorithm
Best Fitness Execution Time (s) Distance metric Distance

per Unit
Time mean std min max mean std min max mean std min max

Ant Colony
Optimization

1.22E+05 9.48E+05 -5.63E+02 7.35E+00 7.35E+00 9.39E+00 9.00E-02 3.51E+01 9.26E-02 1.36E+00 0.00E+00 2.00E+01 1.26E-02

Bat Algorithm -1.83E+00 4.58E+02 -9.77E+02 2.63E+00 2.63E+00 3.67E+00 1.88E-02 1.99E+01 3.15E+01 1.58E+02 0.00E+00 1.14E+03 1.20E+01

Biogeography-
Based Optimization -9.72E+00 1.93E+02 -8.81E+02 7.34E+00 7.34E+00 9.76E+00 7.13E-02 4.42E+01 2.64E+03 1.17E+04 0.00E+00 1.41E+05 3.60E+02

Cuckoo Search -4.46E+01 1.92E+02 -9.60E+02 5.99E+01 5.99E+01 1.18E+02 5.19E-02 7.51E+02 8.48E+01 3.83E+02 0.00E+00 3.74E+03 1.42E+00

FFO (additional
conditions OFF) -4.03E+01 1.84E+02 -9.60E+02 4.61E+00 4.61E+00 7.82E+00 2.50E-02 5.23E+01 2.64E+06 1.21E+07 1.47E+03 1.20E+08 5.74E+05

FFO (additional
conditions ON) -2.04E+01 1.20E+02 -8.18E+02 9.11E-02 9.11E-02 1.25E-01 0.00E+00 7.27E-01 1.02E+05 3.86E+05 0.00E+00 3.36E+06 1.12E+06

Firefly Algorithm -2.25E+01 1.71E+02 -8.75E+02 1.73E+02 1.73E+02 3.09E+02 1.31E-01 1.80E+03 7.31E+02 6.83E+03 0.00E+00 9.16E+04 4.23E+00

Flower Pollination
Algorithm

-3.85E+01 1.75E+02 -9.41E+02 2.86E+00 2.86E+00 3.93E+00 2.33E-02 2.07E+01 6.87E+01 3.08E+02 0.00E+00 2.39E+03 2.40E+01

Genetic Algorithm -3.02E+01 1.65E+02 -9.56E+02 1.92E+00 1.92E+00 2.48E+00 2.40E-02 1.17E+01 5.62E+00 1.44E+01 3.62E-03 1.14E+02 2.93E+00

Grey Wolf
Optimizer

-1.51E+01 1.78E+02 -9.60E+02 5.38E+00 5.38E+00 7.49E+00 4.14E-02 4.01E+01 3.59E+03 1.62E+04 8.90E-02 1.44E+05 6.67E+02

Harmony Search -3.95E+01 1.78E+02 -9.60E+02 7.52E-01 7.52E-01 1.19E+00 6.00E-03 7.33E+00 1.18E+02 4.52E+02 0.00E+00 3.42E+03 1.57E+02

Particle Swarm
Optimization

-3.76E+01 1.74E+02 -9.60E+02 2.39E+00 2.39E+00 3.13E+00 2.46E-02 1.43E+01 1.07E+05 9.96E+05 3.74E+01 1.44E+07 4.45E+04

Simulated
Annealing

-3.80E+00 1.34E+02 -7.18E+02 3.65E-02 3.65E-02 3.41E-02 9.97E-04 1.25E-01 1.04E+02 9.39E+01 2.30E+00 7.66E+02 2.86E+03

Tabu Search 1.02E+01 1.81E+02 -7.87E+02 8.23E-02 8.23E-02 7.41E-02 3.99E-03 2.63E-01 5.77E+02 5.14E+02 2.89E+01 1.51E+03 7.01E+03

Whale Optimization
Algorithm

-4.14E+01 1.78E+02 -9.58E+02 2.45E+00 2.45E+00 3.22E+00 2.47E-02 1.47E+01 3.73E+03 1.30E+04 2.94E-02 9.68E+04 1.52E+03

853

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

30

Now, we gain further insights into the performance of all algorithms across different settings 854

through the illustration presented in Fig. 3. This figure shows a sample of trends collected on the 855

selected functions to show how the algorithms perform. It is quite clear that the FFO performs 856

similarly to other algorithms. For example, the first sub-figure highlights performance variations 857

of several optimization algorithms on the Ackley function at 2D, with a specific focus on the 858

number of agents employed. The FFO with additional conditions "OFF" consistently maintains 859

lower fitness values across all agent configurations compared to most algorithms, suggesting 860

higher efficiency. This is in contrast to algorithms like Bat algorithm and Ant Colony Optimization, 861

which show a marked increase in average best fitness. The FFO with additional conditions "OFF" 862

outperforms the latter at higher agent counts, which indicates better scalability with increasing 863

agents. Similar observations can also be made in terms of the algorithmic performance with the 864

number of iterations – especially in the case of the Egg Holder function, which shows superior 865

performance for the FFO algorithm. 866

 867

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

31

 868

 869

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

32

 870

Fig. 3 Sample of trends across different experimental settings 871

Here, we analyze and rank the performance of optimization algorithms across various settings, 872

specifically focusing on the dimensions, maximum iterations, and the number of agents involved 873

in terms of identifying those that took the longest (and shortest) time to solve, and that achieved 874

the most (and least) accuracy. This process was conducted at each unique setting. First, we rank 875

the algorithms by returning the top three entries of the specified metric and setting. Then, we 876

aggregate these frequencies both locally (for each setting) and globally (across all settings) to 877

provide a comprehensive view of which algorithms consistently perform well or underperform 878

across varied configurations. 879

We report that the Firefly algorithm appears predominantly in the longest to solve category with a 880

total of 27 out of 27 occurrences. This suggests that the Firefly algorithm, despite its potential 881

advantages in exploring complex landscapes, tends to have longer execution times compared to 882

other algorithms in the study. This could be due to its inherent characteristics, such as the 883

attractiveness parameter and light intensity, which might cause slower convergence, especially in 884

scenarios involving complicated objective functions. The FFO (additional conditions ON) 885

algorithm consistently appears as the fastest solver, also with 27 instances. This algorithm was 886

followed by the Tabu Search. The success in this category indicates the algorithmic potential for 887

applications requiring quick solutions where computational resources can be limited. 888

In the most accurate category, the Cuckoo Search leads with 9 occurrences, followed by the FFO 889

(additional conditions OFF) with 5 occurnaces and various other algorithms. The notable 890

performance of Cuckoo Search could be attributed to its unique search capabilities, leveraging 891

Lévy flights for global search combined with a probabilistic switch to local search. On the other 892

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

33

hand, the Ant Colony Optimization is predominantly featured in the least accurate category with 893

25 instances. This might indicate ACO's challenges in maintaining high accuracy across the 894

settings tested, potentially due to its reliance on pheromone trails, which might lead to premature 895

convergence or difficulty in escaping local optima in certain types of problems. 896

Other sets of comparisons between selected algorithms can be seen in Fig. 4. For example, Fig. 4a 897

compares the average history fitness across all functions and for all algorithms. This figure shows 898

that the FFO (additional conditions OFF) demonstrates a rapid convergence initially compared to 899

others like the Bat and Grey Wolf Optimizer, which exhibit more gradual improvements. Figure 4b 900

compares the best fitness achieved in FFO, Tabu Search, the Bat, and the Grey Wolf Optimizer 901

algorithms. In this figure, FFO (additional conditions OFF) excels in deeply multi-modal landscapes 902

like the Ackley and Griewank functions. This suggests that FFO (additional conditions OFF) is 903

particularly adept at managing and escaping local optima in complex search spaces. The graph 904

also shows minimal variance in performance across different configurations (agent counts and 905

iteration limits), indicating the robustness and effectiveness of this algorithm. 906

Figure 4c shows the performance of all algorithms in tackling continuous and non-continuous 907

functions to provide a clear comparison of how each algorithm handles different types of function 908

landscapes. Here, the FFO (additional conditions OFF) shows comparable performance in both 909

categories, underscoring its versatility. More specifically, in continuous functions, it ranks among 910

the top performers, closely competing with algorithms like Particle Swarm Optimization and 911

Genetic Algorithm. The FFO (additional conditions OFF) also shows similar performance in non-912

continuous functions. These figures further show the comparative performance and consistency of 913

the newly proposed FFO algorithm against those well established methods. 914

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

34

 915

 916

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

35

 917

 918

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

36

 919

 920

Fig. 4 Further cross examination between the FFO and other notable algorithms 921

To complement the above analysis, the Friedman and Wilcoxon non-parametric statistical tests for 922

ranking the above algorithm were carried out [64,65]. These statistical methods can evaluate and 923

compare the performance of optimization algorithms across multiple functions. The Friedman test 924

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

37

ranks algorithms based on their mean performance across all tested functions, where a lower rank 925

indicates superior performance (i.e., achieving better, usually lower, fitness values). Each function 926

is treated equally, and the ranks are averaged to provide an overall ranking for each algorithm. The 927

test then checks if the observed rankings are statistically significant. 928

On the other hand, the Wilcoxon test focuses on pairwise comparisons between algorithms. This 929

test calculates the signed rank of the differences in performance between each pair to assess 930

whether one algorithm consistently outperforms the other. While both tests aim to highlight the 931

best-performing algorithms, they approach the evaluation from slightly different perspectives—932

Friedman emphasizes overall ranking across all scenarios, while Wilcoxon emphasizes 933

consistency in pairwise dominance. Figure 5 shows the outcome of these tests. As one can see, the 934

FFO ranks 4 and 5 in these tests, respectively. PSO, GWO, and FPO rank in the top three spots. 935

 936

Fig. 5 Friedman and Wilcoxon non-parametric statistical tests for 2D 937

20D and 50D setting 938

Similar to the previous analysis and discussion, Table 4 and Fig. 6 list the overall obtained results 939

from the analysis carried out on all algorithms and functions in higher dimensions of 20D and 50D. 940

Thus, only scalable functions were used in this examination. These functions include Ackley, 941

Eggholder, Easom, Expanded Shaffer’s F6, Expanded Zakharov, Griewank, Gldstien-Price, 942

Rosenbrock, Schaffer N.02, Schwefel, Sphere, and Whitely. 943

In this comparative analysis, the FFO (additional conditions OFF) demonstrates a creditable mean 944

best fitness of 2.88E+03, which, while not the lowest in our dataset, offers a viable trade-off 945

between fitness achievement and computational resources when compared to algorithms like the 946

Simulated Annealing, which has a lower mean best fitness of 5.17E-02 but at a significantly 947

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

38

reduced complexity. In terms of execution time, the FFO (additional conditions OFF) records a 948

mean of 9.35E+02 seconds, positioning it as a middle-range performer. It is notably faster than 949

high-accuracy contenders such as the Firefly algorithm and the Biogeography-Based Optimization, 950

which clocks in at mean times of 2.93E+02 seconds and 1.06E+01 seconds, respectively, reflecting 951

a more efficient performance considering the relatively lower fitness figures. 952

On a more positive note, the FFO (additional conditions OFF) has signifncat exploration capability, 953

as measured by the Total Distance metric, where it posts a mean of 1.58E+07. This is significantly 954

higher than that of the Particle Swarm Optimization and Grey Wolf Optimizer, which stand at 955

2.98E+05 and 3.10E+04, respectively. Moreover, the Distance per Unit Time for the FFO (with 956

conditions OFF) is large and stands at 2.95E+06, shadowing those of Cuckoo Search and Harmony 957

Search, which report 3.41E+01 and 2.85E+03, respectively. This metric highlights the FFO's 958

efficiency in covering large distances in the search space per unit of time, reinforcing its utility in 959

expansive and complex problem spaces where speed and breadth of exploration are paramount. It 960

is quite clear that the FFO ranked well in all metrics (see Fig. 6). 961

 962

Fig. 6 Ranking of algorithms in 20D and 50D settings 963

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and Applications. https://doi.org/10.1007/s00521-025-

11074-z.

39

Table 4 Overall results for 20D and 50D settings 964

Algorithm Best Fitness Execution Time (s) Distance metric Distance
per Unit

Time mean std min max mean std min max mean std min max

Ant Colony
Optimization

7.61E+01 1.41E+02 9.04E-02 6.78E+02 9.42E+05 1.02E+07 -9.60E+02 1.48E+08 1.59E+03 4.57E+03 0.00E+00 3.20E+04 2.09E+01

Bat Algorithm 4.07E+00 8.43E+00 1.80E-02 7.49E+01 1.58E+04 7.26E+04 -9.77E+02 5.13E+05 9.75E+01 7.05E+02 0.00E+00 9.91E+03 2.39E+01

Biogeography-
Based Optimization

1.06E+01 1.74E+01 7.30E-02 1.37E+02 1.22E+04 5.86E+04 -9.45E+02 4.44E+05 2.69E+04 9.81E+04 0.00E+00 1.24E+06 2.55E+03

Cuckoo Search 1.20E+02 3.66E+02 5.37E-02 3.63E+03 4.22E+03 2.62E+04 -9.60E+02 2.99E+05 4.10E+03 1.23E+04 0.00E+00 9.31E+04 3.41E+01

FFO (additional
conditions OFF)

5.35E+00 1.00E+01 2.62E-02 8.16E+01 2.88E+03 2.19E+04 -9.60E+02 2.70E+05 1.58E+07 6.46E+07 1.50E+03 6.49E+08 2.95E+06

FFO (additional
conditions ON)

1.81E-01 2.90E-01 0.00E+00 2.67E+00 9.01E+03 4.40E+04 -9.02E+02 3.41E+05 5.80E+05 1.95E+06 0.00E+00 1.78E+07 3.21E+06

Firefly Algorithm 2.93E+02 7.74E+02 1.36E-01 7.35E+03 1.03E+04 5.17E+04 -9.48E+02 5.16E+05 2.06E+03 9.80E+03 0.00E+00 1.02E+05 7.03E+00

Flower Pollination
Algorithm

4.43E+00 8.81E+00 2.39E-02 7.74E+01 4.27E+02 2.82E+03 -9.60E+02 4.03E+04 8.12E+02 2.66E+03 3.89E-02 2.16E+04 1.83E+02

Genetic Algorithm 3.50E+00 5.87E+00 2.41E-02 4.73E+01 4.01E+02 2.17E+03 -9.60E+02 1.86E+04 9.72E+01 2.11E+02 0.00E+00 1.95E+03 2.78E+01

Grey Wolf
Optimizer

8.40E+00 1.72E+01 4.20E-02 1.52E+02 7.23E+02 3.46E+03 -9.60E+02 2.09E+04 3.10E+04 1.05E+05 6.21E-02 8.51E+05 3.68E+03

Harmony Search 1.83E+00 4.06E+00 6.99E-03 3.69E+01 4.15E+03 2.89E+04 -9.60E+02 3.48E+05 5.22E+03 2.10E+04 0.00E+00 2.12E+05 1.57E+02

Particle Swarm
Optimization

3.19E+00 5.31E+00 2.50E-02 4.31E+01 4.80E+02 2.67E+03 -9.60E+02 3.35E+04 2.98E+05 9.34E+05 3.24E+01 1.05E+07 4.45E+04

Simulated
Annealing

5.17E-02 7.16E-02 9.97E-04 5.57E-01 4.58E+03 3.05E+04 -8.21E+02 3.73E+05 5.18E+02 7.21E+02 1.78E+00 4.96E+03 2.86E+03

Tabu Search 1.40E+00 3.07E+00 3.91E-03 2.14E+01 7.04E+02 3.04E+03 -7.53E+02 2.18E+04 5.04E+02 5.25E+02 2.17E+01 2.04E+03 7.01E+03

Whale Optimization
Algorithm

3.19E+00 5.25E+00 2.54E-02 4.18E+01 -5.35E+01 4.24E+02 -9.60E+02 6.14E+03 2.10E+04 6.20E+04 9.85E-02 5.91E+05 1.52E+03

965

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

40

Now, we gain further insights into the performance of all algorithms across the settings of 20D 966

and 50D, as seen in Fig. 7. It can be seen that the FFO performs consistently similarly to other 967

algorithms at different settings of agents and iterations. 968

969

 970

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

41

971

 972

Fig. 7 Sample of trends across different experimental settings 973

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

42

We revisit the ranking performance of the optimization algorithms across the longest (and 974

shortest) time to solve and that achieved the most (and least) accuracy. Similar to the case of 2D, 975

the Firefly algorithm leads this category with an appearance frequency of 75, indicating it often 976

requires the most time to solve the selected benchmark functions. On the other hand, the Ant Colony 977

Optimization appears far less frequently with a count of 6, suggesting a quicker resolution time but 978

possibly at the expense of other performance metrics like accuracy or search depth. Then, the 979

Simulated Annealing dominates the fastest to solve category and hence demonstrates its ability to 980

swiftly find solutions. In terms of accuracy, Cuckoo Search stands out with 22 appearances, 981

followed by the FFO (additional conditions OFF) and Particle Swarm Optimization, each scoring 13 982

occurrences. The Ant Colony Optimization leads as the least accurate with 29 appearances, 983

followed by the Bat Algorithm at 19, suggesting these algorithms might prioritize exploration or 984

speed over precision. 985

Figure 8 paints a series of comparisons between selected algorithms. Figure 8a compares the 986

average history fitness across all functions and algorithms. This graph shows the average fitness 987

history across iterations for various optimization algorithms. The FFO (additional conditions OFF) 988

starts with a rapid convergence compared to other algorithms, which is particularly noticeable 989

against the backdrop of more gradual improvements shown by the Genetic Algorithm and 990

Simulated Annealing. The FFO (additional conditions OFF) demonstrates a stabilization around 200 991

iterations, where its fitness value flatlines. This early convergence suggests that, on average, this 992

algorithm is efficient in quickly finding a promising area of the search space. 993

While Fig. 8b compares the best fitness achieved in FFO, Tabu Search, the Bat, and the Grey Wolf 994

Optimizer algorithms. In Fig. 8b, the performance of FFO (additional conditions OFF) is plotted 995

across various scalable functions under different settings, showing stable performance for all 996

functions, except the Rosenbrock, and especially under conditions of higher iterations and larger 997

agent numbers. These spikes indicate that FFO (additional conditions OFF) can excel in complex, 998

multimodal landscapes but show variable performance dependent on the function's characteristics 999

and the search space complexity. Comparing this performance to other algorithms, such as Tabu 1000

Search, Bat, and Grey Wolf Optimizer, across the same benchmark functions shows generally stable 1001

performance as well, with some exceptions where fitness spikes, similar to the behavior seen in 1002

FFO. Figure 8c shows the performance of all algorithms in tackling continuous and non-continuous 1003

scalable benchmarking functions. The FFO (additional conditions OFF) shows competitive 1004

performance in all function types. These figures reinforce the performance of the newly proposed 1005

FFO algorithm against notable algorithms. 1006

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

43

 1007

 1008

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

44

 1009

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

45

 1010

 1011

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

46

 1012

 1013

Fig. 8 Further cross examination between the FFO and other notable algorithms 1014

The Friedman and Wilcoxon non-parametric statistical tests for ranking the above algorithm were 1015

again carried out for this leg of the investigation. Figure 9 shows that the FFO ranks 5 and 6.5 in 1016

2D and 6 and 9.5 for 50D for these tests, respectively. PSO, GWO, FPA, and WOA rank in the top 1017

spots. As seen above, FFO always ranks better without constraints (i.e., conditions = off). 1018

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

47

 1019

 1020

Fig. 9 Friedman and Wilcoxon non-parametric statistical tests carried out for higher dimensions 1021

(note: Top: 20D, Bottom: 50D) 1022

Additional testing on functions from the CEC benchmarks (at 2D, 20D and 50D settings) 1023

The IEEE Congress on Evolutionary Computation (IEEE CEC) is an annual conference that 1024

focuses on the latest developments and research in evolutionary computation. As part of this 1025

conference, benchmark functions are commonly used to evaluate the performance of optimization 1026

algorithms. These benchmark functions, often called CEC functions, are specifically designed to 1027

present various challenges to optimization methods, such as multimodality, non-separability, and 1028

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

48

ruggedness. The CEC benchmark suites are updated periodically, and we examine some of the 1029

functions that appear in the 2020 edition. Each function typically represents a specific optimization 1030

problem with known difficulty, allowing for a comprehensive evaluation of an algorithm's 1031

strengths and weaknesses across various problem landscapes. Table 5 lists the CEC 2020 1032

functions; additional details can be found in the CEC report [66]. 1033

Table 5 CEC 2020 functions. 1034

No. Functions Fi∗=Fi(x∗) Dimensions tested

1 Shifted and Rotated Bent Cigar Function (also, CEC 2017 F1) 100 2, 20, 50

2 Shifted and Rotated Schwefel’s Function (also, CEC 2014 F11) 1100 2, 20, 50

3 Shifted and Rotated Lunacek bi-Rastrigin Function (also, CEC 2017 F7) 700 2, 20, 50

4 Expanded Rosenbrock’s plus Griewangk’s Function (also, CEC 2017 F19) 1900 2, 20, 50

5 Hybrid Function 1 (N=3) (also, CEC 2014 F17) 1700 20, 50

6 Hybrid Function 2 (N=4) (also, CEC 2017 F16) 1600 20, 50

7 Hybrid Function 3 (N=5) (also, CEC 2014 F21) 2100 20, 50

8 Composition Function 1 (N=3) (also, CEC 2017 F22) 2200 2, 20, 50

9 Composition Function 2 (N=4) (also, CEC 2017 F24) 2400 2, 20, 50

10 Composition Function 3 (N=5) (also, CEC 2017 F25) 2500 2, 20, 50

 1035

The outcome of this analysis is listed in Table 6. This table shows that both FFO and PSW ranked 1036

first in terms of overall ranking among all metrics. In addition, Fig. 10 shows that the best version 1037

of FFO ranked between 3 and 6 for the Friedman and Wilcoxon non-parametric statistical tests, 1038

respectively. Overall, PSO, GA, and CS achieved the best rankings in this experiment.1039

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and Applications. https://doi.org/10.1007/s00521-025-11074-z.

49

Table 6 Overall results for 2D, 20D, and 50D settings 1040

Algorithm
Best Fitness Execution Time (s) Distance metric Distance per

Unit Time mean std min max mean std min max mean std min max

2D

Ant Colony Optimization 1.30E+08 3.57E+08 1.43E+03 1.20E+09 1.15E+01 1.58E+01 1.27E-01 6.76E+01 7.90E+00 3.60E+01 0.00E+00 2.00E+02 6.86E-01

Bat Algorithm 4.82E+06 3.55E+07 8.03E+01 2.82E+08 9.10E+00 1.45E+01 2.70E-02 6.32E+01 1.64E+01 4.79E+01 0.00E+00 2.68E+02 1.80E+00

Biogeography-Based Optimization 6.95E+07 4.58E+08 4.34E+02 3.56E+09 1.79E+01 2.67E+01 9.80E-02 1.12E+02 5.47E+03 1.13E+04 0.00E+00 7.82E+04 3.05E+02

Cuckoo Search 1.37E+03 9.97E+02 -3.23E+01 2.91E+03 3.36E+02 6.73E+02 1.27E-01 3.07E+03 9.79E+01 9.71E+01 1.11E+00 4.88E+02 2.91E-01

FFO (additional conditions OFF) 9.30E+04 7.24E+05 -3.24E+01 5.75E+06 1.33E+01 2.30E+01 6.80E-02 1.01E+02 4.13E+06 7.28E+06 8.82E+04 4.05E+07 3.10E+05

FFO (additional conditions ON) 5.78E+05 4.49E+06 2.99E+01 3.56E+07 4.71E-01 6.22E-01 1.90E-02 4.02E+00 3.28E+05 3.09E+05 3.33E+04 1.74E+06 6.97E+05

Firefly Algorithm 2.49E+07 1.89E+08 -2.72E+01 1.50E+09 7.20E+02 1.42E+03 2.66E-01 6.58E+03 2.99E+02 4.82E+02 0.00E+00 2.29E+03 4.16E-01

Flower Pollination Algorithm 1.49E+03 1.03E+03 2.40E+01 2.92E+03 9.40E+00 1.47E+01 3.20E-02 6.43E+01 7.75E+01 6.90E+01 5.10E+00 2.78E+02 8.25E+00

Genetic Algorithm 1.89E+03 1.04E+03 2.13E+02 4.96E+03 5.04E+00 8.00E+00 3.10E-02 3.69E+01 1.44E+01 1.83E+01 1.37E-01 1.03E+02 2.86E+00

Grey Wolf Optimizer 2.37E+03 1.54E+03 2.13E+02 5.63E+03 1.87E+01 2.96E+01 6.70E-02 1.28E+02 6.63E+03 8.23E+03 9.07E+01 3.49E+04 3.55E+02

Harmony Search 1.56E+05 8.66E+05 1.60E+02 6.20E+06 4.31E+00 6.99E+00 1.60E-02 3.03E+01 8.13E+01 9.96E+01 0.00E+00 6.73E+02 1.88E+01

Particle Swarm Optimization 1.72E+03 1.12E+03 -3.24E+01 5.62E+03 5.63E+00 8.73E+00 4.20E-02 4.06E+01 1.66E+05 5.65E+05 1.82E+03 3.82E+06 2.95E+04

Simulated Annealing 5.52E+08 2.81E+09 1.51E+02 1.59E+10 9.67E-02 1.11E-01 1.03E-03 3.79E-01 9.49E+01 6.39E+01 2.27E+01 2.69E+02 9.81E+02

Tabu Search 6.58E+08 3.17E+09 1.11E+02 1.87E+10 2.21E-01 2.35E-01 1.10E-02 7.94E-01 5.77E+02 5.14E+02 2.89E+01 1.51E+03 7.01E+03

Whale Optimization Algorithm 2.51E+04 1.79E+05 2.24E+02 1.42E+06 5.65E+00 8.40E+00 3.70E-02 3.59E+01 3.73E+03 1.30E+04 2.94E-02 9.68E+04 1.52E+03

20D

Ant Colony Optimization 2.65E+09 8.24E+09 4.62E+02 3.57E+10 5.11E+01 6.37E+01 3.71E-01 2.23E+02 1.85E+03 8.06E+02 0.00E+00 3.45E+03 3.62E+01

Bat Algorithm 6.61E+09 1.89E+10 -2.62E+03 8.31E+10 1.03E+01 1.60E+01 1.64E-02 7.78E+01 5.03E+01 2.72E+02 0.00E+00 2.14E+03 4.87E+00

Biogeography-Based Optimization 5.12E+09 1.64E+10 2.55E+03 9.25E+10 1.87E+01 2.66E+01 4.89E-02 1.14E+02 4.00E+04 5.07E+04 0.00E+00 2.41E+05 2.14E+03

Cuckoo Search 2.19E+08 1.22E+09 -3.52E+03 8.52E+09 3.86E+02 7.26E+02 6.76E-02 3.29E+03 3.46E+03 1.79E+03 6.28E+02 8.95E+03 8.96E+00

FFO (additional conditions OFF) 1.09E+09 5.71E+09 -5.30E+03 4.41E+10 1.12E+01 1.67E+01 2.69E-02 7.25E+01 9.78E+06 1.10E+07 3.31E+05 4.18E+07 8.73E+05

FFO (additional conditions ON) 4.14E+09 1.36E+10 1.61E+03 8.26E+10 4.58E-01 4.52E-01 8.18E-03 2.13E+00 1.08E+06 8.76E+05 1.14E+05 4.05E+06 2.35E+06

Firefly Algorithm 7.10E+09 2.00E+10 7.12E+02 9.67E+10 7.83E+02 1.46E+03 1.46E-01 6.43E+03 2.26E+03 4.21E+03 0.00E+00 2.21E+04 2.89E+00

Flower Pollination Algorithm 1.13E+08 9.81E+08 -3.44E+03 9.29E+09 1.03E+01 1.55E+01 1.65E-02 7.08E+01 1.36E+03 5.65E+02 4.54E+02 2.80E+03 1.32E+02

Genetic Algorithm 1.24E+09 7.11E+09 -1.72E+03 5.63E+10 6.42E+00 9.13E+00 2.55E-02 4.11E+01 4.70E+02 4.02E+02 5.16E+01 1.62E+03 7.32E+01

Grey Wolf Optimizer 7.37E+08 3.09E+09 -9.46E+02 1.93E+10 2.06E+01 3.06E+01 3.25E-02 1.32E+02 4.25E+04 3.87E+04 3.35E+03 1.30E+05 2.06E+03

Harmony Search 1.21E+09 5.96E+09 -4.65E+03 4.49E+10 5.16E+00 7.54E+00 1.69E-02 3.30E+01 2.85E+03 2.56E+03 0.00E+00 1.50E+04 5.53E+02

Particle Swarm Optimization 2.97E+08 1.81E+09 -1.68E+03 1.54E+10 6.06E+00 8.65E+00 9.51E-03 3.73E+01 1.21E+05 1.79E+05 1.01E+04 1.24E+06 1.99E+04

Simulated Annealing 4.98E+09 2.48E+10 -1.65E+03 1.71E+11 1.05E-01 1.14E-01 0.00E+00 4.56E-01 8.90E+02 7.58E+02 9.54E+00 2.63E+03 8.44E+03

Tabu Search 3.90E+09 1.64E+10 -1.89E+03 1.05E+11 2.25E+00 2.34E+00 2.06E-02 7.89E+00 5.84E+02 5.05E+02 5.60E+01 1.77E+03 2.60E+02

Whale Optimization Algorithm 3.11E+09 9.79E+09 1.58E+03 4.70E+10 5.91E+00 8.41E+00 1.57E-02 3.61E+01 1.84E+04 1.57E+04 6.51E+02 5.97E+04 3.12E+03

50D

Ant Colony Optimization 1.85E+10 5.18E+10 7.57E+03 2.09E+11 1.18E+02 1.45E+02 1.45E+00 5.02E+02 3.26E+03 1.34E+03 5.48E+02 6.52E+03 2.77E+01

Bat Algorithm 3.69E+10 8.22E+10 -1.85E+03 3.27E+11 1.05E+01 1.55E+01 3.36E-02 8.09E+01 6.49E+01 2.63E+02 0.00E+00 1.84E+03 6.21E+00

Biogeography-Based Optimization 2.92E+10 6.74E+10 7.83E+03 2.67E+11 2.08E+01 2.93E+01 8.32E-02 1.50E+02 6.94E+04 8.48E+04 0.00E+00 3.52E+05 3.33E+03

Cuckoo Search 3.77E+09 1.99E+10 -6.37E+02 1.32E+11 3.94E+02 7.39E+02 9.99E-02 4.15E+03 8.57E+03 4.31E+03 2.15E+03 2.48E+04 2.17E+01

FFO (additional conditions OFF) 9.99E+09 3.85E+10 -1.74E+03 2.37E+11 1.19E+01 1.77E+01 4.70E-02 9.02E+01 1.66E+07 1.96E+07 5.24E+05 8.41E+07 1.39E+06

FFO (additional conditions ON) 2.45E+10 6.20E+10 8.85E+03 2.31E+11 5.04E-01 4.91E-01 1.42E-02 2.27E+00 1.71E+06 1.32E+06 1.81E+05 5.88E+06 3.39E+06

Firefly Algorithm 3.71E+10 7.91E+10 8.31E+03 2.75E+11 8.20E+02 1.53E+03 2.12E-01 8.64E+03 2.75E+03 6.27E+03 0.00E+00 4.05E+04 3.35E+00

Flower Pollination Algorithm 9.95E+08 6.53E+09 -1.77E+03 5.87E+10 1.08E+01 1.61E+01 3.27E-02 8.78E+01 3.30E+03 1.33E+03 3.62E+02 6.91E+03 3.05E+02

Genetic Algorithm 1.03E+10 4.35E+10 -3.59E+03 3.07E+11 7.94E+00 1.09E+01 4.99E-02 5.24E+01 1.08E+03 9.81E+02 1.00E+02 3.82E+03 1.36E+02

Grey Wolf Optimizer 3.80E+09 1.38E+10 2.07E+03 8.35E+10 2.15E+01 3.22E+01 7.34E-02 1.71E+02 6.80E+04 6.53E+04 5.60E+03 2.49E+05 3.15E+03

Harmony Search 9.83E+09 3.29E+10 -7.79E+03 2.09E+11 5.66E+00 7.96E+00 4.68E-02 4.25E+01 5.24E+03 4.16E+03 0.00E+00 2.22E+04 9.26E+02

Particle Swarm Optimization 2.04E+09 1.02E+10 -2.89E+03 7.03E+10 6.36E+00 9.28E+00 3.11E-02 4.93E+01 2.78E+05 6.00E+05 1.68E+04 5.13E+06 4.37E+04

Simulated Annealing 2.35E+10 7.58E+10 1.72E+03 3.82E+11 1.09E-01 1.24E-01 0.00E+00 5.94E-01 2.07E+03 1.84E+03 4.15E+01 6.29E+03 1.91E+04

Tabu Search 3.13E+10 8.78E+10 -3.73E+03 3.94E+11 5.59E+00 6.11E+00 6.74E-02 2.30E+01 8.88E+02 9.18E+02 6.63E+01 2.73E+03 1.59E+02

Whale Optimization Algorithm 1.34E+10 3.27E+10 8.56E+03 1.30E+11 6.11E+00 8.77E+00 1.22E-02 4.60E+01 2.97E+04 2.56E+04 8.29E+02 8.30E+04 4.85E+03

1041

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

50

 1042

 1043

(a) At 2D 1044

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

51

 1045

 1046

(b) At 20D 1047

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

52

 1048

 1049

(c) At 50D 1050

Fig. 10 Results on CEC 2020 functions at 2D, 20D, and 50D 1051

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

53

Real engineering problems 1052

The CEC benchmark suit also contains several constraints and real engineering problems 1053

commonly used in the benchmarking analysis. As such, five additional engineering problems were 1054

examined herein. Table 6 lists these problems and their characteristics. It should be noted that the 1055

mathematical derivation for these problems is not included herein for brevity, yet it can be easily 1056

accessible from the original source of CEC 2020, as well as in [67]. The Friedman and Wilcoxon 1057

non-parametric statistical tests were carried out for each problem individually. Each problem was 1058

run with the following settings: Agents [25, 50, 100] and iterations [25, 100, 100]. Table 7 and 1059

Fig. 11 show the outcome of this analysis as well as a comparative history run for the three-bar 1060

truss design problem. Overall, it can be seen that the proposed algorithm has a decent performance, 1061

ranking within the top 5 spots in each problem (and first on the distance covered), with its best 1062

performance recorded on the three-bar truss design problem. This analysis also shows the need to 1063

improve further and tune FFO to allow it to enhance its performance on real engineering problems. 1064

Table 6 CEC 2020 engineering problems. 1065

No. Functions
No. of

constraints
Objective/Remark

10 Process flow sheeting problem 3 Minimize the flow sheeting process

17 Tension/Compression spring design 4 Optimize the weight of a spring

18 Pressure vessel design 4 Optimize the welding cost, material, and forming

19 Three-bar truss design problem 3 Minimize the weight of the bar structures

 1066

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and Applications. https://doi.org/10.1007/s00521-025-11074-z.

54

Table 7 Results on engineering problems (Ranks are based on fitness) 1067
Tension/Compression spring design

Algorithm
Max Iterations: 25, Agents: 25 Max Iterations: 100, Agents: 50 Max Iterations: 500, Agents: 100

Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean

BA 11 0.0351 6.0900 0.1800 11 0.0714 0.5600 0.0501 13 966229.5285 0.0900 0.0000

BBO 12 0.1346 12.4000 304.4317 9 0.0232 1.1500 296.3512 12 900872.9867 0.2000 0.0000

CS 5 0.0130 283.8200 0.9638 7 0.0161 13.4600 16.7597 7 0.0347 1.1400 3.8306

FFO (conditions OFF) 2 0.0127 6.5400 104755.4358 6 0.0157 0.6100 24247.5107 8 0.0348 0.0800 2769.1185

FFO (conditions ON) 8 0.0152 0.6800 22753.4404 8 0.0167 0.2900 9874.0739 6 0.0184 0.0800 2896.5719

FA 4 0.0127 592.9600 15.4207 4 0.0140 27.9600 15.5375 4 0.0150 2.0400 29.8529

FPA 3 0.0127 6.5900 5.8156 2 0.0127 0.5800 6.8138 3 0.0140 0.0800 5.9666

GA 7 0.0145 3.2400 10.7102 5 0.0157 0.3100 3.3469 10 55481.1184 0.0500 4.3979

GWO 1 0.0127 12.5700 644.1331 3 0.0131 1.1400 150.7236 2 0.0138 0.2100 61.2991

PSW 9 0.0156 3.7200 2870.0385 1 0.0127 0.3600 1362.2240 1 0.0135 0.0500 653.0028

SA 6 0.0133 0.0300 11.0837 13 20016.2994 0.0100 3.7422 11 443221.9830 0.0000 2.5749

TS 13 2763.4846 0.1000 179.8630 12 7800.8091 0.0200 29.3575 9 0.2461 0.0100 9.0047

WOA 10 0.0169 3.9800 643.2659 10 0.0270 0.3600 181.7931 5 0.0161 0.0500 47.2800

Pressure vessel design

Algorithm
Max Iterations: 25, Agents: 25 Max Iterations: 100, Agents: 50 Max Iterations: 500, Agents: 100

Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean

BA 10 27672.8778 0.0700 0.0141 11 30169.8352 0.5100 0.1832 8 8101.1895 5.6300 2.4383

BBO 8 20177.3138 0.1400 651.7029 10 19536.3625 1.0900 0.0000 13 13435.2796 11.5400 16406.9804

CS 3 8588.6665 0.8700 297.5321 1 6255.4730 12.0500 380.9517 2 6055.6658 250.7500 461.4131

FFO (conditions OFF) 6 16238.2724 0.0900 79738.3119 7 13338.4993 0.5500 528538.3793 3 6058.6276 6.0300 3550676.4451

FFO (conditions ON) 7 19499.2357 0.0900 71257.3334 9 14521.7170 0.2600 266136.4509 10 10273.0019 0.8200 796115.0139

FA 11 57102.8448 1.8100 0.0000 8 13490.6739 25.3300 62.4217 12 12401.2549 541.9300 123.3595

FPA 5 15354.0109 0.0700 39.0251 2 6384.4138 0.5900 229.8373 4 6082.2291 5.8500 118.4741

GA 9 21774.6840 0.0400 14.9825 6 11447.9394 0.2900 37.1125 5 6195.9443 2.9900 21.8192

GWO 2 7770.6504 0.1300 437.6659 4 7325.6852 1.0400 1456.1620 1 6049.9952 11.2400 11543.6784

PSW 1 6093.6822 0.0500 10362.2512 3 6767.6893 0.3300 22045.4224 6 7330.6288 3.5100 35351.4385

SA 13 853026517754487000.0000 0.0000 20.7782 13 277802.5589 0.0100 85.2185 11 11584.2557 0.0300 167.9289

TS 12 197045.3629 0.0100 13.2349 12 132269.8417 0.0300 58.0393 7 7336.3953 0.1800 226.9320

WOA 4 12478.3154 0.0400 212.7318 5 10313.6550 0.3400 972.9236 9 9937.7694 3.6700 10364.2569

Three-bar truss design problem

Algorithm
Max Iterations: 25, Agents: 25 Max Iterations: 100, Agents: 50 Max Iterations: 500, Agents: 100

Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean

BA 11 275.5093 0.4100 0.0113 3 263.9097 0.9600 0.0012 4 263.8950 10.1600 0.0435

BBO 2 264.1611 0.8100 0.0000 10 265.4840 1.8100 0.0000 8 264.8880 19.1400 84.4678

CS 6 268.3153 4.9800 0.6687 5 264.5199 24.0400 0.4967 6 264.1509 439.9200 0.4726

FFO (conditions OFF) 3 264.3765 0.2700 284.0285 4 264.0866 0.8900 1761.7764 2 263.8919 10.4300 8258.9518

FFO (conditions ON) 5 266.2357 0.2600 314.5034 6 264.6600 0.4200 926.2980 5 264.1359 0.8500 1930.4116

FA 1 264.0344 9.1500 0.2640 2 263.9003 53.0000 0.2236 3 263.8926 952.0100 0.0785

FPA 8 269.5027 0.5800 0.7339 7 264.6662 0.9300 0.0294 7 264.2540 10.3400 0.2196

GA 7 268.8947 0.1200 0.0072 8 264.6835 0.4600 0.0142 9 265.1644 4.8600 0.3835

GWO 12 282.8427 0.7400 0.0157 12 282.8427 1.8100 2.8466 13 282.8402 18.4800 3.3070

PSW 4 265.8990 0.1600 75.3812 1 263.8915 0.5400 172.3326 1 263.8915 5.9400 402.4285

SA 12 282.8427 0.0000 3.2932 12 282.8427 0.0100 3.3107 12 272.4788 0.0500 4.3317

TS 10 272.5299 0.0100 4.2519 12 282.8427 0.0200 20.3575 10 267.1915 0.1100 91.2797

WOA 9 270.1763 0.4000 1.0332 9 264.7512 0.6200 3.1695 11 267.9062 5.9900 2.2217

Process flow sheeting problem

Algorithm
Max Iterations: 25, Agents: 25 Max Iterations: 100, Agents: 50 Max Iterations: 500, Agents: 100

Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean Rank Best Fitness_mean Execution Time_mean Total Distance_mean

BA 12 69813.0780 0.3500 0.0000 12 2711.2231 0.7600 0.2014 5 1.2507 6.8500 0.5123

BBO 13 158420.4126 1.3600 8.6180 13 10149.9007 1.4100 22.3039 13 14285.1378 15.5600 0.0000

CS 6 16.4045 5.7400 0.0989 5 1.3677 16.5000 0.8389 6 1.2510 325.9700 0.4688

FFO (conditions OFF) 8 667.6444 0.3500 744.3846 7 1.4775 0.7100 4498.6072 2 1.2500 8.1900 21269.7306

FFO (conditions ON) 9 1542.7608 0.2700 701.7935 2 1.2500 0.5400 3816.3316 10 2.3309 1.0200 7224.1551

FA 3 1.2526 8.8700 0.1592 3 1.2501 37.6700 0.2927 3 1.2500 716.7600 1.1939

FPA 4 8.7331 0.2300 1.4028 6 1.4384 0.6400 0.9795 9 1.2690 8.2700 0.6424

GA 7 56.1340 0.0900 1.3388 8 8.7747 0.3700 0.3217 7 1.2573 4.7700 0.6688

GWO 2 1.2509 0.8400 0.4131 4 1.2504 1.2700 1.2805 4 1.2500 14.3800 4.8077

PSW 1 1.2500 0.1300 114.8741 1 1.2500 0.3900 177.3422 1 1.2500 4.0700 378.2226

SA 11 8200.0204 0.0000 0.3118 10 26.0589 0.0100 3.1196 11 248.9490 0.0400 3.4190

TS 10 5914.7086 0.0100 1.9175 9 18.0536 0.0200 13.5297 8 1.2597 0.1500 48.5607

WOA 5 14.0063 0.1200 6.2861 11 1880.2030 0.5200 6.9295 12 1245.9236 4.6700 25.7932

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and Applications. https://doi.org/10.1007/s00521-025-11074-z.

55

 1068

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

56

 1069

 1070

(a) Tension/Compression spring design 1071

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

57

 1072

(b) Pressure vessel design 1073

 1074

(c) Three-bar truss design problem 1075

 1076

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

58

(d) Process flow sheeting problem 1077

Fig. 11 Rankings on real engineering problems 1078

Future research needs 1079

In order to further examine the performance of the proposed algorithm, we present a new set of 1080

results (see Fig. 12). In this analysis, we focus on function attributes like continuity, separability, 1081

multimodality, differentiability, and performance in continuous function optimization are 1082

demonstrated. The plots assess performance based on the average of metrics and visually display 1083

how each algorithm performs across these attributes under the specific settings. 1084

This figure shows results produced by filtering for specific settings (Iterations=1000, Agents=100) 1085

and merging these results with predefined function attributes. These plots reveal distinct 1086

performance characteristics that generally show more modest peaks across the attributes, 1087

suggesting that some algorithms perform better in handling specific functions (i.e., Separable 1088

functions). For example, the FFO algorithm ranks first and fifth in continuous functions, first and 1089

fourth in differentiable and non-differentiable, second and sixth on multimodal and non-1090

multimodal functions, fifth in scalable and non-scalable functions, and eighth and fifth on 1091

separable and non-separable functions. 1092

These insights, together with those gained from the testing on real engineering problems, can also 1093

provide technical improvement areas for FFO (as well as the selected algorithms). For example, 1094

FFO could focus on enhancing its performance in non-separable and multimodal landscapes, 1095

perhaps by integrating more adaptive search strategies or improving its handling of function 1096

differentiability through better derivative estimation or step size adjustment mechanisms. 1097

Additionally, efforts to boost scalability could be crucial, especially for handling higher-1098

dimensional optimization problems more effectively. In addition, there is a need to further examine 1099

the proposed algorithms against some of the recently developed algorithms (namely, SASS, 1100

COLSHADE, sCMAGES). At the moment, the performance of FFO can indeed be improved to 1101

match it with the aim of further enhancing it against the aforementioned leading algorithms. In 1102

addition, the authors hope that future editions from FFO include multi- and many-objective 1103

optimization capabilities. 1104

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

59

 1105

 1106

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

60

1107

 1108

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

61

 1109

Fig. 11 Comparison of algorithms for function categories 1110

6.0 Conclusions 1111

The Firefighter optimization (FFO) algorithm offers a metaheuristic approach for optimization. This 1112

algorithm was examined against 13 commonly used optimization algorithms and 38 functions 1113

(including benchmark functions, CEC 2020 standard functions, and real engineering problems). 1114

Our results demonstrate that in 2D analysis, FFO ranks in the top 3 slots in terms of the best fitness 1115

and space covered and ranks first in the Distance per Unit Time metric. Similarly, the performance 1116

of the FFO algorithm also ranks third in higher dimensions (20D and 50D) and maintains a top 5 1117

performance across various metrics. Our analysis also indicates a few possible means to improve 1118

the performance of FFO, primarily on scalable/non-scalable functions and separable/non-separable 1119

functions, as well as on performing on real optimization problems. 1120

Data Availability 1121

Some or all data, models, or code that support the findings of this study are available from the 1122

corresponding author upon reasonable request. 1123

Firefighter optimization (FFO) can be accessed from [to be added]. 1124

Conflict of Interest 1125

The authors declare no conflict of interest. 1126

References 1127

[1] S.S. Rao, Engineering optimization: Theory and practice, 2019. 1128

https://doi.org/10.1002/9781119454816. 1129

[2] J. Silberholz, B. Golden, Comparison of Metaheuristics, in: 2010. 1130

https://doi.org/10.1007/978-1-4419-1665-5_21. 1131

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

62

[3] A. Alorf, A survey of recently developed metaheuristics and their comparative analysis, 1132

Eng. Appl. Artif. Intell. (2023). https://doi.org/10.1016/j.engappai.2022.105622. 1133

[4] R.M. Lewis, V. Torczon, M.W. Trosset, Direct search methods: Then and now, J. Comput. 1134

Appl. Math. 124 (2000) 191–207. https://doi.org/10.1016/S0377-0427(00)00423-4. 1135

[5] T. Guilmeau, E. Chouzenoux, V. Elvira, Simulated Annealing: A Review and a New 1136

Scheme, in: IEEE Work. Stat. Signal Process. Proc., 2021. 1137

https://doi.org/10.1109/SSP49050.2021.9513782. 1138

[6] X.C. Pardo, P. González, J.R. Banga, R. Doallo, Population based metaheuristics in Spark: 1139

Towards a general framework using PSO as a case study, Swarm Evol. Comput. (2024). 1140

https://doi.org/10.1016/j.swevo.2024.101483. 1141

[7] D. Caicedo, L. Lara-Valencia, Y. Valencia, Machine Learning Techniques and Population-1142

Based Metaheuristics for Damage Detection and Localization Through Frequency and 1143

Modal-Based Structural Health Monitoring: A Review, Arch. Comput. Methods Eng. 1144

(2022). https://doi.org/10.1007/s11831-021-09692-6. 1145

[8] A. Bavar, A. Bavar, F. Gholian-Jouybari, M. Hajiaghaei-Keshteli, C. Mejía-Argueta, 1146

Developing new heuristics and hybrid meta-heuristics to address the bi-objective home 1147

health care problem, Cent. Eur. J. Oper. Res. (2023). https://doi.org/10.1007/s10100-023-1148

00862-4. 1149

[9] X. Guo, J. Hu, H. Yu, M. Wang, B. Yang, A new population initialization of metaheuristic 1150

algorithms based on hybrid fuzzy rough set for high-dimensional gene data feature 1151

selection, Comput. Biol. Med. (2023). https://doi.org/10.1016/j.compbiomed.2023.107538. 1152

[10] A. Gogna, A. Tayal, Metaheuristics: Review and application, J. Exp. Theor. Artif. Intell. 1153

(2013). https://doi.org/10.1080/0952813X.2013.782347. 1154

[11] K. Rajwar, K. Deep, S. Das, An exhaustive review of the metaheuristic algorithms for 1155

search and optimization: taxonomy, applications, and open challenges, Artif. Intell. Rev. 1156

(2023). https://doi.org/10.1007/s10462-023-10470-y. 1157

[12] R. Sala, R. Müller, Benchmarking for Metaheuristic Black-Box Optimization: Perspectives 1158

and Open Challenges. (arXiv:2007.00541v1 [cs.NE]), ArXiv Comput. Sci. (2020). 1159

[13] K.-L. Du, M.N.S. Swamy, Search and Optimization by Metaheuristics, 2016. 1160

https://doi.org/10.1007/978-3-319-41192-7. 1161

[14] A. Beşkirli, İ. Dağ, M.S. Kıran, A tree seed algorithm with multi-strategy for parameter 1162

estimation of solar photovoltaic models, Appl. Soft Comput. 167 (2024) 112220. 1163

https://doi.org/10.1016/J.ASOC.2024.112220. 1164

[15] A. Beşkirli, İ. Dağ, I-CPA: An Improved Carnivorous Plant Algorithm for Solar 1165

Photovoltaic Parameter Identification Problem, Biomimetics. (2023). 1166

https://doi.org/10.3390/biomimetics8080569. 1167

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

63

[16] Q. Li, X. Zeng, W. Wei, Multi-objective particle swarm optimization algorithm using 1168

Cauchy mutation and improved crowding distance, Int. J. Intell. Comput. Cybern. (2023). 1169

https://doi.org/10.1108/IJICC-04-2022-0118. 1170

[17] F.S. Gharehchopogh, Advances in Tree Seed Algorithm: A Comprehensive Survey, Arch. 1171

Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-021-09698-0. 1172

[18] C. Qu, W. He, X. Peng, X. Peng, Harris Hawks optimization with information exchange, 1173

Appl. Math. Model. (2020). https://doi.org/10.1016/j.apm.2020.03.024. 1174

[19] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A.H. Gandomi, The Arithmetic 1175

Optimization Algorithm, Comput. Methods Appl. Mech. Eng. (2021). 1176

https://doi.org/10.1016/j.cma.2020.113609. 1177

[20] M. Shehab, I. Mashal, Z. Momani, M.K.Y. Shambour, A. AL-Badareen, S. Al-Dabet, N. 1178

Bataina, A.R. Alsoud, L. Abualigah, Harris Hawks Optimization Algorithm: Variants and 1179

Applications, Arch. Comput. Methods Eng. (2022). https://doi.org/10.1007/s11831-022-1180

09780-1. 1181

[21] M. Dorigo, M. Birattari, T. Stützle, Ant colony optimization artificial ants as a 1182

computational intelligence technique, IEEE Comput. Intell. Mag. (2006). 1183

https://doi.org/10.1109/CI-M.2006.248054. 1184

[22] J.E. Bell, P.R. McMullen, Ant colony optimization techniques for the vehicle routing 1185

problem, Adv. Eng. Informatics. (2004). https://doi.org/10.1016/j.aei.2004.07.001. 1186

[23] X.S. Yang, A.H. Gandomi, Bat algorithm: A novel approach for global engineering 1187

optimization, Eng. Comput. (Swansea, Wales). (2012). 1188

https://doi.org/10.1108/02644401211235834. 1189

[24] P.W. Tsai, J.S. Pan, B.Y. Liao, M.J. Tsai, V. Istanda, Bat algorithm inspired algorithm for 1190

solving numerical optimization problems, in: Appl. Mech. Mater., 2012. 1191

https://doi.org/10.4028/www.scientific.net/AMM.148-149.134. 1192

[25] D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput. (2008). 1193

https://doi.org/10.1109/TEVC.2008.919004. 1194

[26] R.A. Gupta, R. Kumar, A.K. Bansal, BBO-based small autonomous hybrid power system 1195

optimization incorporating wind speed and solar radiation forecasting, Renew. Sustain. 1196

Energy Rev. (2015). https://doi.org/10.1016/j.rser.2014.09.017. 1197

[27] X.S. Yang, S. Deb, Cuckoo search via Lévy flights, in: 2009 World Congr. Nat. Biol. 1198

Inspired Comput. NABIC 2009 - Proc., 2009. 1199

https://doi.org/10.1109/NABIC.2009.5393690. 1200

[28] A.H. Gandomi, X.S. Yang, A.H. Alavi, Cuckoo search algorithm: A metaheuristic approach 1201

to solve structural optimization problems, Eng. Comput. (2013). 1202

https://doi.org/10.1007/s00366-011-0241-y. 1203

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

64

[29] X.-S. Yang, A. Slowik, Firefly Algorithm, Swarm Intell. Algorithms. (2020) 163–174. 1204

https://doi.org/10.1201/9780429422614-13. 1205

[30] H. Xie, L. Zhang, C.P. Lim, Y. Yu, C. Liu, H. Liu, J. Walters, Improving K-means 1206

clustering with enhanced Firefly Algorithms, Appl. Soft Comput. J. (2019). 1207

https://doi.org/10.1016/j.asoc.2019.105763. 1208

[31] X.S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: A novel approach for 1209

multiobjective optimization, Eng. Optim. (2014). 1210

https://doi.org/10.1080/0305215X.2013.832237. 1211

[32] S. Lalljith, I. Fleming, U. Pillay, K. Naicker, Z.J. Naidoo, A.K. Saha, Applications of 1212

Flower Pollination Algorithm in Electrical Power Systems: A Review, IEEE Access. 1213

(2022). https://doi.org/10.1109/ACCESS.2021.3138518. 1214

[33] J.H. Holland, Adaptation in natural and artificial systems : an introductory analysis with 1215

applications to biology, control, and artificial intelligence, 1975. 1216

[34] S. Ansari, K.A. Alnajjar, M. Saad, S. Abdallah, A.A. El-Moursy, Automatic Digital 1217

Modulation Recognition Based on Genetic-Algorithm-Optimized Machine Learning 1218

Models, IEEE Access. (2022). https://doi.org/10.1109/ACCESS.2022.3171909. 1219

[35] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw. (2014). 1220

https://doi.org/10.1016/j.advengsoft.2013.12.007. 1221

[36] Z.W. Geem, J.H. Kim, G. V. Loganathan, A New Heuristic Optimization Algorithm: 1222

Harmony Search, Simulation. (2001). https://doi.org/10.1177/003754970107600201. 1223

[37] J. Kennedy, R. Eberhart, Particle swarm optimization, Proc. ICNN’95 - Int. Conf. Neural 1224

Networks. 4 (n.d.) 1942–1948. https://doi.org/10.1109/ICNN.1995.488968. 1225

[38] F. Marini, B. Walczak, Particle swarm optimization (PSO). A tutorial, Chemom. Intell. Lab. 1226

Syst. (2015). https://doi.org/10.1016/j.chemolab.2015.08.020. 1227

[39] P. Siarry, Simulated annealing, in: Metaheuristics, 2016. https://doi.org/10.1007/978-3-1228

319-45403-0_2. 1229

[40] W.L. Goffe, G.D. Ferrier, J. Rogers, Global optimization of statistical functions with 1230

simulated annealing, J. Econom. (1994). https://doi.org/10.1016/0304-4076(94)90038-8. 1231

[41] F. Glover, Tabu Search—Part I, ORSA J. Comput. (1989). 1232

https://doi.org/10.1287/ijoc.1.3.190. 1233

[42] A. Alfieri, C. Castiglione, E. Pastore, A multi-objective tabu search algorithm for product 1234

portfolio selection: A case study in the automotive industry, Comput. Ind. Eng. (2020). 1235

https://doi.org/10.1016/j.cie.2020.106382. 1236

[43] S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Softw. (2016). 1237

https://doi.org/10.1016/j.advengsoft.2016.01.008. 1238

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

65

[44] N. Rana, M.S.A. Latiff, S.M. Abdulhamid, H. Chiroma, Whale optimization algorithm: a 1239

systematic review of contemporary applications, modifications and developments, Neural 1240

Comput. Appl. (2020). https://doi.org/10.1007/s00521-020-04849-z. 1241

[45] C. Wei, Y. Li, Y. Yu, Solution of ackley function based on particle swarm optimization 1242

algorithm, in: Proc. 2020 IEEE Int. Conf. Adv. Electr. Eng. Comput. Appl. AEECA 2020, 1243

2020. https://doi.org/10.1109/AEECA49918.2020.9213634. 1244

[46] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, A novel population initialization method 1245

for accelerating evolutionary algorithms, Comput. Math. with Appl. (2007). 1246

https://doi.org/10.1016/j.camwa.2006.07.013. 1247

[47] P.R.D. Marinho, R.B. Silva, M. Bourguignon, G.M. Cordeiro, S. Nadarajah, 1248

AdequacyModel: An R package for probability distributions and general purpose 1249

optimization, PLoS One. (2019). https://doi.org/10.1371/journal.pone.0221487. 1250

[48] E.J. Solteiro Pires, J.A. Tenreiro MacHado, P.B. De Moura Oliveira, J. Boaventura Cunha, 1251

L. Mendes, Particle swarm optimization with fractional-order velocity, Nonlinear Dyn. 1252

(2010). https://doi.org/10.1007/s11071-009-9649-y. 1253

[49] M. Molga, C. Smutnicki, Test functions for optimization needs, Test Funct. Optim. Needs. 1254

(2005). 1255

[50] J.M. Czerniak, H. Zarzycki, Artificial Acari Optimization as a new strategy for global 1256

optimization of multimodal functions, J. Comput. Sci. (2017). 1257

https://doi.org/10.1016/j.jocs.2017.05.028. 1258

[51] D. Whitley, S. Rana, J. Dzubera, K.E. Mathias, Evaluating evolutionary algorithms, Artif. 1259

Intell. (1996). https://doi.org/10.1016/0004-3702(95)00124-7. 1260

[52] A.A. Goldstein, J.F. Price, On descent from local minima, Math. Comput. (1971). 1261

https://doi.org/10.1090/s0025-5718-1971-0312365-x. 1262

[53] A.O. Griewank, Generalized descent for global optimization, J. Optim. Theory Appl. 1263

(1981). https://doi.org/10.1007/BF00933356. 1264

[54] D.M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, 1972. 1265

[55] S.K. Mishra, Global Optimization by Differential Evolution and Particle Swarm Methods: 1266

Evaluation on Some Benchmark Functions, SSRN Electron. J. (2011). 1267

https://doi.org/10.2139/ssrn.933827. 1268

[56] J. Matyas, Random Optimization, Autom. i Telemekh. (1965). 1269

[57] Z. Michalewicz, A Survey of Constraint Handling Techniques in Evolutionary Computation 1270

Methods, in: Evol. Program. IV, 2020. https://doi.org/10.7551/mitpress/2887.003.0018. 1271

[58] A. Omeradzic, H.G. Beyer, Convergence Properties of the (μ/μI, λ)-ES on the Rastrigin 1272

Function, in: FOGA 2023 - Proc. 17th ACM/SIGEVO Conf. Found. Genet. Algorithms, 1273

2023. https://doi.org/10.1145/3594805.3607126. 1274

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

This is a preprint draft. The published article can be found at: https://doi.org/10.1007/s00521-025-11074-z.

Please cite this paper as:

Naser M.Z., Naser, A. (2025). The firefighter algorithm for optimization problems. Neural Computing and

Applications. https://doi.org/10.1007/s00521-025-11074-z.

66

[59] Y.-W.W. Shang, Y.-H.H. Qiu, A Note on the Extended Rosenbrock Function, Evol. 1275

Comput. 14 (2006) 119–126. https://doi.org/10.1162/106365606776022733. 1276

[60] P.C. Chou, J.L. Chen, Enforced mutation to enhancing the capability of particle swarm 1277

optimization algorithms, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. 1278

Intell. Lect. Notes Bioinformatics), 2011. https://doi.org/10.1007/978-3-642-21515-5_4. 1279

[61] A. Tripathy, H.-P. Schwefel, Numerical Optimization of Computer Models, J. Oper. Res. 1280

Soc. (1982). https://doi.org/10.2307/2581158. 1281

[62] M.A. Styblinski, T.S. Tang, Experiments in nonconvex optimization: Stochastic 1282

approximation with function smoothing and simulated annealing, Neural Networks. (1990). 1283

https://doi.org/10.1016/0893-6080(90)90029-K. 1284

[63] T. Malik, E.H. Winer, An analytical curve based approach for multi-modal optimization, 1285

in: 9th AIAA/ISSMO Symp. Multidiscip. Anal. Optim., 2002. 1286

https://doi.org/10.2514/6.2002-5520. 1287

[64] J. Carrasco, S. García, M.M. Rueda, S. Das, F. Herrera, Recent trends in the use of statistical 1288

tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and 1289

a critical review, Swarm Evol. Comput. (2020). 1290

https://doi.org/10.1016/j.swevo.2020.100665. 1291

[65] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric 1292

statistical tests as a methodology for comparing evolutionary and swarm intelligence 1293

algorithms, Swarm Evol. Comput. (2011). https://doi.org/10.1016/j.swevo.2011.02.002. 1294

[66] C.T. Yue, Problem Defnitions and Evaluation Criteria for the CEC 2020 Special Session 1295

and Competition on Single Objective Bound Constrained Numerical Optimization, 2020. 1296

[67] CEC2020-Algorithms/test_functions/cec2020_constrained.py at main · strzecha/CEC2020-1297

Algorithms · GitHub, (n.d.). https://github.com/strzecha/CEC2020-1298

Algorithms/blob/main/test_functions/cec2020_constrained.py#L390 (accessed August 23, 1299

2024). 1300

 1301

https://doi.org/10.1007/s00521-025-11074-z
https://doi.org/10.1007/s00521-025-11074-z

