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Abstract 6 

Causal diagrams are logic and graphical tools that depict assumptions about presumed causal 7 

relations. Such diagrams have proven effective in tackling a variety of problems in social sciences 8 

and epidemiology research yet remain foreign to civil engineers. Unlike the traditional means of 9 

examining relationships via multivariable regression, causal diagrams can identify the presence of 10 

confounders, colliders, and mediators. Thus, this paper hopes to introduce the big ideas behind 11 

causal diagrams (specifically, directed acyclic graphs (DAGs)) and how to create and apply such 12 

diagrams to several civil engineering problems. Findings from the presented case studies indicate 13 

that civil engineers can successfully use causal diagrams to improve their understanding of 14 

complex causation relations, thereby accelerating research and practical efforts. 15 

Keywords: Causality; Causal diagrams; Machine learning; Structural engineering. 16 

1.0 Introduction 17 

A primary objective of causality is to establish causal relationships, identifying how a presumed 18 

cause leads to and activates the appearance of an effect [1]. More often than not, an effect is 19 

generated due to a number of causes. These causes could be independent or dependent on one 20 

another. A particular cause may precede other causes, while some causes might happen 21 

concurrently with others. Multiple causes can also share a common cause (confounder). A 22 

challenge then becomes to recognize a suitable means to tie causes to effects in a proper manner 23 

that preserves the reality of the phenomenon at hand. This complexity necessitates various levels 24 

of approaches, especially in fields where the interplay of multiple causes may directly impact 25 

effects, such as structural engineering. 26 

From the lens of structural engineering, engineers have leveraged first principles to derive 27 

meaningful expressions that epitomize causal relationships. For example, the moment capacity of 28 

a W-shaped steel beam comprises the product of the plastic modulus and yield strength of 29 

structural steel. This illustrates a direct application of causal understanding in engineering design. 30 

However, when first principles are insufficient due to the complexity of interactions or are not 31 

readily applicable, the engineers revert to statistical approaches – namely linear and multilinear 32 

regression. This transition from theoretical to empirical modeling is evident in adopting linear and 33 

multilinear regression to formulate engineering solutions. For example, the formula for evaluating 34 

the fire resistance of  RC columns as adopted in the AS3600 code was also attained via multilinear 35 

regression [2]. Other formulae in structural engineering are also built on linear regression, such as 36 

those adopted in ASCE 29 [3]. 37 

In some instances, linear-like regression may not be able to realize proper formulae, and hence, 38 

the use of nonlinear regression analysis can be adopted. A common example of purely-based 39 
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nonlinear regression is the formula created by Orangun et al. [4] to calculate bar development 40 

length in steel reinforcement embedded in concrete. Another example is the shear strength model 41 

for reinforced concrete beams as endorsed by the ACI committee 446 (Fracture Mechanics of 42 

Concrete) [5], as well as for FRP-reinforced concrete beams [6]. The use of nonlinear regression 43 

is quite common in seismic applications of structural design [7,8], as well as in examining size 44 

effects [9]. Bazant and Yu [10] note that while problems within the same domain may require 45 

rigorous statistical investigation (i.e., size effect) [10], some expressions (such as that for 46 

estimating the elastic modulus of concrete in terms of the compressive strength, etc.) can be arrived 47 

at empirically. A number of expressions were also arrived at empirically, such as that often used 48 

to evaluate the fire resistance of concrete-filled hollow steel columns [11] and in timber design 49 

[12].  50 

The recent rise of nonparametric regression (such as symbolic regression) has also proved to be 51 

useful in deriving engineering formulae. These techniques offer a way to derive engineering 52 

formulas without the constraints of traditional regression assumptions (linearity, uniformity, 53 

homoscedasticity, etc.), providing a fresh perspective on modeling complex phenomena. While 54 

symbolic regression can also yield formulae, the arrangement of the dependent variables may not 55 

mirror that derived via traditional analysis, nor that to be physically plausible. Surprisingly, these 56 

models can still predict civil engineering phenomena with ease and accuracy that exceed those of 57 

their traditional counterparts [13].  58 

A look into the above variants of regression signifies that such variants are easy to use, well 59 

accepted, and, most of all, interpretable. This interpretability arises on two fronts: 1) the fact that 60 

regression yields a formula that shows the relation between dependent variables, and 2) quantifies 61 

the contribution of each dependent variable upon the response of interest. Attaining a formula 62 

allows engineers to simply substitute this formula without the hassle of software or complex 63 

procedures.  64 

From an engineering sense, regression is often implicitly used to state that the dependent variables 65 

1) predict or cause the phenomenon, and 2) this prediction and causation are in the form of the 66 

formula on hand. In reality, this may, and is likely, not be precise. For example, while linear 67 

regression can successfully create formulae to predict phenomena, the same formulas and models 68 

cannot be declared simply as causal.  69 

This misconception could arise from pre-specifying the arrangement and form of the relationships 70 

adopted in such a formula. For example, the shear strength contribution of a typical concrete beam 71 

is given by the following formula: 72 

𝑉𝑐 = 0.66𝜌1/3√𝑓′𝑐𝑏𝑤𝑑          Eq. 1 73 

Where 𝜌, 𝑏𝑤and 𝑑 represent the ratio of flexural reinforcement, the width of the web, and the depth 74 

of the beam, respectively. The origin of formula comes from a comprehensive statistical analysis 75 

aimed at creating a formula to predict the shear strength of concrete [14]. The logic behind this 76 
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formula matches that of our domain knowledge. For example, an increase in any of the above-77 

listed dependent variables increases the shear strength.  78 

Regression analysis serves as a precursor to the application of machine learning (ML) in structural 79 

engineering and, hence, bridges traditional statistical modeling with contemporary computational 80 

approaches [15]. Yet, such models may not be as transparent (i.e., do not convert into a formula) 81 

[16]. The interpretation of such models is tedious and often incomprehensible unless supplemented 82 

with explainability measures. These measures can articulate the importance of model input, the 83 

relationship between each input due to arriving at correct and accurate predictions, etc. [17,18]. 84 

This becomes of the utmost importance when creating and developing ML models [19]. This may 85 

also grow from identifying relationships to possibly establishing causal mechanisms [20]. 86 

Unlike regression and machine learning, graphs can also be used to describe relationships between 87 

dependent and independent variables. The utilization of graphs presents an alternative method to 88 

explore and establish relationships, including causal connections, within engineering contexts. In 89 

such an exercise, the graphs can represent the relationships in a parametric or nonparametric 90 

manner as opposed to linear/nonlinear relations. More interestingly, given the graphic nature of 91 

graphs, these can also describe clear causal relations as well.  92 

The historical development of path diagrams and subsequent analytical methods stresses the 93 

potential of graphical representations to reinforce causal understanding. One of the earliest 94 

mentions of the use of graphs to display relationships is attributed to Sewall Wright [21], who 95 

established, mathematically, that a variable that resides in a graph causes another variable and not 96 

the other way around. Those graphs were called the “path diagrams” – a key part of the path 97 

analysis method. Using such graphs, Wright could articulate and defend causal assumptions 98 

mathematically and based on scientific grounds. Path analysis grows into factor analysis, and then 99 

structural equation modeling and much more in-depth reviews on the history and development of 100 

these methods can be found elsewhere [22–24]. Both of these methods remain closely tied to causal 101 

principles and with very limited use to structural engineers. As such, this paper hopes to showcase 102 

the potential of causal graphs in structural engineering.   103 

2.0 An overview of regression 104 

A user of regression (say, an engineer) compiles a set of parameters identified empirically or from 105 

physics/domain knowledge to be tied to a phenomenon (i.e., temperature rise, deformation, stress, 106 

etc.). The hope is to create a tool (or a model or a formula) to predict or estimate the response from 107 

the compiled parameters. The creation of a tool must satisfy the requirement of the method used 108 

to create the tool.  109 

For example, if linear regression is used to create a model, then this model must conform to the 110 

assumptions used in developing linear models. One of the first assumptions an engineer must 111 

follow is to set the predictors (X1, X2, X3,.., Xn) and response (Y). Given the linear nature of the 112 

linear regression, these predictors can only be linearly tied to the response. In this particular 113 

example, the regression is multilinear (see Eq. 2). Frequently, in multilinear regression analysis, 114 
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each relation of these independent variables is weighted solely to ensure the dependency of the 115 

predicted variable.  116 

𝑌 = 𝛽0 + 𝛽1 𝑋1 + 𝛽2 𝑋2 + ⋯ + 𝛽𝑛 𝑋𝑛 + 𝜖        Eq. 2 117 

where 𝛽0; is the y-intercept, 𝛽𝑛; is the regression coefficient of each independent variable 𝑋𝑛, and 118 

𝜖 is the error.  119 

There are more mechanical assumptions that an engineer must also satisfy when conducting linear 120 

and multilinear regression. These include: 121 

o The presence of a linear relationship between the predictors and response. 122 

o Any linear combination of the predictors must have a normal distribution.  123 

o There exists no, or very little, correlation between the predictors.   124 

o The independent of observations are statistically independent.  125 

o Satisfying homoscedasticity (equal or similar variances in error among different groups). 126 

Unfortunately, many of the above assumptions are left unchecked or implicitly assumed to be 127 

satisfied (please refer to Bazant et al. [25] for their analysis of data distribution in the shear 128 

database by ACI Committee 445 [25]) – as if they are not, then the application of traditional 129 

analysis is unlikely to be applied, and engineers may not realize a working model.  130 

By doing so, the engineer assigns that the predictors can, in fact, be thought of to predict, estimate, 131 

or cause the response, with little regard to how true, such an assignment is, or to the fact that the 132 

predictors are independent of each other – and most importantly to the sufficiency the predictors 133 

provide (i.e., there are no other predictors that exist).  134 

The above discussion on linear regression can be extended to nonlinear and symbolic regression 135 

(with suitable adjustments for the mechanical assumptions used in each method). The same can be 136 

carried over to machine learning, which has the least number of mechanical assumptions to satisfy.  137 

3.0 Descriptive, predictive, and causal engineering queries  138 

In general, queries pertaining to structural engineering problems can be roughly categorized into 139 

two classes, namely, 1) descriptive and 2) predictive. In hindsight, a third class also exists, referred 140 

to as causal, yet is rarely articulated as one. All of these are discussed herein.  141 

The first type of query answers and describes engineering observations and their statistical 142 

relations. Engineers use such queries to establish a foundation for creating and tuning practical 143 

solutions (including formulae, methods, and theories). For example, this type of query can describe 144 

observations (i.e., on average, structures in coastal areas experience more corrosion issues than 145 

that inland) or compare the outcomes of experiments (e.g., all things being equal, larger columns 146 

have higher fire resistance ratings than smaller columns). The descriptive nature of these queries 147 

implies that descriptive questions cannot support counterfactuals (viz., they do not ask how a 148 

response would differ if some predictors were different). 149 
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On the other hand, predictive queries use data and observations to predict the response of interest 150 

given a set of predefined predictors. While descriptive queries are capable of addressing past and 151 

present observations, the second type of query can forecast future observations (whether at the 152 

individual or population level). The fact that these queries are built on predefined predicates 153 

implies that they, just like the first type of queries, cannot be used to identify or answer 154 

counterfactuals nor state the mechanisms for how and why the response occurs.  155 

Finally, causal queries ask how a change(s) in structural response results from altering predictors. 156 

For example, a causal question can be: how would the midspan deflection curve change if a beam 157 

depth is increased by 20%? Another question could be: all things being equal, does increasing a 158 

column’s section or improving the material’s strength lead to a much improved fire resistance? 159 

Answering the above questions can simply be done via conducting an experiment on a new deeper 160 

beam and by testing two identical columns (with the expectation of one being with a larger cross 161 

section and the other being fabricated with strong grade materials). Such tests can be costly yet 162 

doable. At the very least, cost-effective numerical models could be developed to answer such 163 

questions. However, such models would need to be validated against some ground truth, and if we 164 

lack a physical test, then the validity of such models may not truly be established.  165 

In some instances, if causal questions were raised at a system or community level, then physical 166 

testing nor numerical models can be used to answer such questions. Herein is where causal models 167 

can come in handy.  168 

4.0 Causal diagrams   169 

As can be seen, one of the key drawbacks of statistical models is that they exemplify parametric 170 

assumptions that are not known to be correct and may well be incorrect. Another drawback of 171 

common statistical models is their incapability of capturing all types of assumptions (e.g., size and 172 

scaling effects, fire exposures other than standard fire (ASTM E119), etc.).  173 

An engineer must adopt causal assumptions to transcend beyond mere correlations and 174 

associations and realize causal relations. Such assumptions can be described via causal diagrams. 175 

These diagrams are graphical constructs that display the relationship between variables and 176 

responses in a web-like manner. This paper will focus on one type of causal diagram called a 177 

Directed Acyclic Graph (DAG).  178 

A DAG consists of nodes (variables) and arrows (directed edges) that tie the variables. The directed 179 

edges are directed because they follow time to order, and they are acyclic because they do not 180 

create any loops. DAGs visually state and encode causal relations and assumptions between the 181 

variables and the response, allowing for causal or counterfactual interpretation. A sequence of any 182 

unbroken route along or against arrows from variable to variable is called a path (see Fig. 1). A 183 

causal path is one that starts with the directed route of arrows leading tail to head from one variable 184 

to another (see A → C, also B→D→C).  185 
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 186 

Fig. 1 A sample of a DAG 187 

An intermediate variable along such a path that is not considered the change of interest nor the 188 

response is called a mediator. Three other types of intermediate variables are of interest, namely 189 

confounders, colliders, and moderators (see Table 1 for simplified definitions and refer to the 190 

selected references for a more detailed and in-depth discussion on various epidemiological and 191 

philosophical aspects). An instrument is an external variable (not intermediate) – such as E. As 192 

one can see, any predictor in a regression analysis could be any of the above variables. In some 193 

instances, a variable can be one type of intermediate variable in one analysis and another in a 194 

different analysis – like D. With special treatment in each case, a traditional statistical and 195 

engineering analysis is likely to be faulty as it will be prone to bias and misinterpretation. 196 

Table 1 Key concepts 197 

Term Simplified definition s Remarks & additional views on definitions  

Confounder 

A variable that has a causal effect 

on both the variables and/or 

variables and response, yet it is not 

affected by them (such as B in Fig. 

1).  

-  Determining whether a variable is a confounder or not and 

whether it should be controlled requires logic (i.e., first 

principles, domain knowledge, etc.), as statistical analysis 

cannot determine this. 

- According to Cox and Wermuth [26], “ … variables, U, whose 

omission seriously distorts the dependence of interest, but 

which were not observed, perhaps because their existence 

and nature were not appreciated”. 

- According to Yao et al. [27], “Confounders are the variables 

that affect both the treatment assignment and the outcome.” 

- Please refer to more detailed definitions in [28], as well as a 

historical perspective confounding in [29]. 
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Collider 
A variable that is a common effect 

of two other variables.  

- A poor identification of a collider can generate distorted 

associations (such as D in terms of B and E in Fig. 1). 

- According to Elwert and Winship [30], “ … a so-called collider 

variable, i.e., a variable that is itself caused by two other 

variables, one that is (or is associated with) the treatment 

and another that is (or is associated with) the outcome.” 

- According to Huntington-Klein [31], a collider is “A variable is 

a collider along a path if both arrows on either side of it 

point at it.”. 

Mediator 

A variable that explains how the 

independent variable influences 

the dependent variable .   

- An example of a mediator can be seen as B in Fig. 1. 

- According to MacKinnon et al. [32], “A mediator is a variable 

that is in a causal sequence between two variables, whereas 

a moderator is not part of a causal sequence between the two 

variables.” 

- According to Imai et al. [33], “… the intuitive notion about 

mediation held by applied researchers that the treatment 

indirectly influences the outcome through the mediator.” 

- According to Pearl [34], “.., the mediator, whose role in 

transmitting the effect of T [treatment] on Y [outcome] we 

wish to assess.” 

Moderator 

A variable that affects the strength 

and direction of a causal 

relationship. 

- According to Huntington-Klein [31], “Moderators are 

variables that don’t necessarily cause another variable 

(although they might do that too). Instead, they modify the 

effect of one variable on another.” 

- According to Bauman et al. [35], “Moderator—an interaction 

variable that affects the direction, strength, or both of the 

relationship between an intervention and mediator …” 

- According to Judd [36], “A moderator variable is a variable, 

which is thought to temper or modulate the magnitude of the 

effect of an independent variable on a dependent one.” 

Instrument 

A variable that is associated with 

the exposure but is not related to 

the response except through its 

relationship with a variable. 

- According to Morgan and Winship [37], “An exogenous source 

of variation that determines Y only by way of the causal 

variable D.” 

- According to Guo and Small [38], “A valid instrumental 

variable is a variable that is independent of unmeasured 

confounders and affects the treatment but does not have a 

direct effect on the outcome beyond its effect on the 

treatment.” 

- According to Pearl [39], “The traditional definition qualifies a 

variable Z as an instrumental (relative to the pair (X, Y)) if 

(i) Z is independent of all variables (including error terms) 

that have an influence on Y that is not mediated by X and (ii) 

Z is not independent of X.” 

 198 

These are some examples of causal diagrams as applied to the following hypothetical structural 199 

engineering problems. Please note that none of the presented examples have a working 200 

mathematical/statistical/physical model, nor can they be solved by collecting and analyzing data 201 

alone. The discussion will be confined to 3- and 4-variable problems as a more in-depth discussion 202 
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on higher order causal diagrams will be conducted in a future study. Interested readers are invited 203 

to review the following articles [40,41] and reviews [42,43] on causal diagrams.  204 

A case for a confounder in flood-prone zone due to strict building codes 205 

Say that a dense zoning area (Z), such as a metropolitan in a flood-prone region, witnesses a limited 206 

number of structural failures (F) despite having a large number of structures (N) as compared to 207 

other zones within this region. A complimentary DAG for this case would be that shown in Fig. 208 

2a. This observation could be attributed to several additional elements that are not immediately 209 

apparent but are crucial for comprehensive understanding. 210 

Firstly, the strict codal provisions enforced in the zoning area of interest play a pivotal role. These 211 

regulations likely mandate rigorous construction methods and standards that account for flood 212 

risks. Such measures significantly reduce the vulnerability of structures to flooding and other 213 

related hazards, contributing to the observed reduction in structural failures. Moreover, the 214 

enforcement of strict codal provisions might also encourage the adoption of innovative 215 

construction techniques, such as elevated foundations, drainage systems, etc. These innovations 216 

further enhance the resilience of structures and substantially reduce the risk of structural damage 217 

during flood events within these densely populated zones. As mentioned earlier, confounders are 218 

best identified via logic rather than statistical analysis – which would return empty if applied to 219 

the above.  220 

A case for a collider in the rise of structural issues  221 

Say that structural issues (S), like cracking, continue to rise in a given bridge population in one 222 

state. Such issues started to grow in the aftermath of lack of funding (L) as well as poor 223 

maintenance practices (P) adopted in that state. This can be depicted in Fig. 2b. As one can see, 224 

the two problems of lack of funding and poor maintenance collied to amplify the structural issues 225 

in bridges.  226 

More specifically, the lack of funding is a critical issue that adversely impacts the ability to allocate 227 

adequate resources for bridge maintenance/repair. One of the common consequences of this 228 

financial burden is a delayed or completely forgone maintenance routine, which is essential for 229 

identifying and addressing structural issues (S) before they escalate into significant structural 230 

problems. The situation is further complicated by the historical context of many bridges. Older 231 

bridges, designed and built according to past standards, may not be equipped to handle current 232 

demands in terms of load and resilience to various stressors. This discrepancy between design 233 

expectations and present-day realities necessitates regular maintenance and, in many cases, 234 

comprehensive upgrades or replacements, which are significantly hindered by funding and 235 

maintenance challenges. 236 

Similarly, poor maintenance practices (P) further compound this issue since even when funds are 237 

available, ineffective maintenance or outdated repair techniques can lead to inadequate restoration 238 

efforts. Thus, minor wear and tear, which could have been managed with regular maintenance, can 239 

grow into critical structural issues over time. Simply, the interaction between lack of funding and 240 
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poor maintenance practices creates a feedback loop that significantly amplifies the risk of 241 

structural failures. This often leads to a reactive rather than proactive maintenance approach, where 242 

actions are taken only after significant damage has occurred, further escalating the costs and 243 

complexities of repair. 244 

A case for a mediator (and instrument) due to a seismic event 245 

Say that an earthquake occurs. The magnitude of the earthquake (E) is the independent variable, 246 

the structural load (M) experienced by the building acts as the mediator variable, and the extent of 247 

building damage (D) is the dependent variable. Additionally, the location of the building - whether 248 

it is situated in a seismically active region or not - can be considered one form of an instrument 249 

variable (I) that influences the relationship between the earthquake magnitude (E) and the resulting 250 

structural load (M). In this scenario, the causal chain unfolds as: The earthquake magnitude (E) 251 

experienced by the building is influenced by the seismic activity of the region (I) in which it is 252 

located. This earthquake magnitude (E) then translates into the structural load (M) experienced by 253 

the building's components, with the level of load being the key mechanism through which the 254 

earthquake's energy is transferred. Ultimately, this induced structural load (M) leads to the 255 

observed extent of building damage (D). In this scenario, the seismic activity of the region (I) acts 256 

as an instrument, as it affects the magnitude of the earthquake (E) but does not directly influence 257 

the building's integrity or its eventual damage (D) – but rather, its effect is mediated through the 258 

earthquake magnitude (E) and the resulting structural load (M). (see Fig. 2c). 259 

This understanding is crucial for structural design, guiding decisions on where and how to build 260 

resilient structures. In the context of the presented mediator analysis, understanding the role of 261 

seismic loads in transmitting earthquake energy to structural damage allows engineers to design 262 

better interventions that can be more effectively targeted to reduce the vulnerability of structures 263 

to earthquake-induced damage. 264 

A case for a moderator in structural fire engineering 265 

In this instance, the magnitude of deformation (Y) in a given structure can be amplified at elevated 266 

temperatures (T) while being under the same level of loading (G) as that seen at ambient 267 

temperatures. Such larger deformations may not be observed under ambient conditions (see Fig. 268 

2d). In this example, the more intense the fire, the more intense the temperature and the more 269 

severe the fire-induced degradation in materials takes place, thus leading to larger deformations.  270 

To reiterate, the core of this case study lies in understanding how elevated temperatures (T) impact 271 

the mechanical properties of construction materials. As temperatures rise, materials such as steel 272 

and concrete can lose stiffness and strength, contributing to increased deformation under load. As 273 

such, there is a clear association between the intensity of the fire with the temperature increase 274 

within the structure. As the fire becomes more intense, temperatures rise accordingly, leading to 275 

more severe degradation of material properties, resulting in larger deformations under the same 276 

load conditions (that would not cause such extensive deformation at ambient temperatures). This 277 

scenario highlights the significance of fire engineering in assessing and mitigating the risks 278 

associated with fire-induced deformations.  279 
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 280 

Fig. 2 Causal diagrams [Note: Top to bottom: a-d. Also, note that the slight curve in d 281 

distinguishes the mediator effect. Please note the existence of one than one way to plot a 282 

mediator (for example, via a straight edge that points at the edge between G and Y, as noted by 283 

Reviewer no. 1) 284 

For this introductory short communication, a number of complex notions were not thoroughly 285 

presented. For example, the notion of independent and identically distributed (i.i.d.) data, complex 286 

case studies, and other causal principles, such as counterfactual reasoning, confounding bias, and 287 

selection bias, were only briefly touched upon for the sake of brevity and focus. Methods to address 288 

these issues, such as propensity score matching, etc., are complex and require a detailed exposition 289 

beyond the scope of this communication. The goal herein is to lay a foundational understanding, 290 

emphasizing how causal diagrams can be practically applied in structural engineering without 291 

overwhelming readers with the full depth of causal inference theory. The author invites interested 292 

researchers and future works to expand on these initial concepts by offering more detailed case 293 

studies and exploring advanced causal inference techniques. The author would also like to stress 294 

that structural engineers would indeed benefit from the various perspectives on the principles of 295 

causal models stemming from parallel domains such as medicine, psychology, economics, 296 

philosophy, etc. 297 
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5.0 Conclusions 298 

This paper presents a case for causal diagrams. Such diagrams can be of aid – especially in 299 

problems that lack physical representation or domain knowledge. A key motivation of this paper 300 

is to present such diagrams and how they can be implemented in structural engineering case 301 

studies. To go beyond regression and improve our predictive capacity, adopting causal principles 302 

and diagrams can be of merit.  303 
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